FORMATO DE INFORMACIÓN DEL RESUMEN DE LA NOTIFICACIÓN (SNIF) PARA LA LIBERACIÓN DE PLANTAS SUPERIORES MODIFICADAS GENÉTICAMENTE (PSMG)

MAÍZ NK603 × MON 810 11 DICIEMBRE 2007

Α.	INFURMACION GENERAL
1.	Detalles de la notificación
(a) Número de notificación:
	B/ES/08/10
(b) Fecha de reconocimiento de la notificación:
(c)	Título del proyecto:
	Continuación de los ensayos de campo con el fin de llevar a cabo la evaluación, caracterización agronómica y desarrollo de variedades de maíz NK603 x MON 810, modificadas genéticamente para tolerancia a glifosato y resistencia frente a taladros.
(d	Periodo de liberación propuesto:
	Desde 01/01/2008 hasta 28/02/2009
2.	Notificador
(a)	Nombre del instituto o compañía:
	Monsanto Europe, S.A., representado por Monsanto Agricultura España, S.L.
<i>3</i> .	¿Esta planificada la liberación de la misma PSMG en otra zona, dentro o fuera de la Comunidad [según el Artículo 6(1)] por el mismo notificador?
Si	[X] No []
	En caso afirmativo, indicar los códigos del país o países: Francia (FR), Alemania (DE) y República Checa (CZ)

4. ¿Se ha notificado la liberación de la misma PSMG en alguna zona dentro o fuera de la Comunidad, por el mismo notificador?

Si [X] No []

En caso afirmativo, indicar el número(s) de notificación:

B/FR/00/02/06; B/DE/04/163; B/ES/04/18; B/ES/04/20; B/FR/04/02/01; B/ES/06/07; B/ES/06/09; B/FR/06/01/04; B/ES/07/06; B/ES/07/08; B/FR06/12/13; B/DE/04/163; B/CZ/06/04. Además de los numerosos ensayos de campo en diferentes regiones maiceras de América del Norte, América del Sur y en diferentes países de todo el mundo, NK603 x MON 810 se está cultivando comercialmente en EE.UU. desde 2002.

Solicitudes C/ES/04/01, de acuerdo con Dir 2001/18/EC, y EFSA-GMO-NL-2005-26, de acuerdo con el Reglamento 1829/2003.

B. INFORMACIÓN DE LA PLANTA MODIFICADA GENÉTICAMENTE

1. Nombre completo

(a)	Familia
	Gramineae

(b) Género

Zea

(c) Especie

mays (2n = 20)

(d) Subespecie

No aplicable

(e) Cultivar/línea de reproducción

Maíz NK603 x MON 810

(f) Nombre común

Maíz

2. Descripción del carácter y características que se han sido introducido o modificado

El híbrido de maíz NK603 x MON 810 es una combinación obtenida por cruce de dos parentales, líneas puras modificadas genéticamente derivadas de los maíces NK603 y MON 810, respectivamente.

El maíz NK603 x MON 810 expresa la proteína CP4 EPSPS, que confiere tolerancia al glifosato (N-fosfonometil-glicina), ingrediente activo del herbicida no selectivo Roundup. La enzima EPSPS está involucrada en la ruta del ácido sikímico implicado en la biosíntesis de los aminoácidos aromáticos de plantas y de microorganismos. Se ha visto que, comparada con la enzima de tipo silvestre, la enzima CP4 EPSPS tiene mucha menos afinidad por el glifosato, y retiene la actividad catalítica en presencia del inhibidor glifosato. Así pues, al tratar con glifosato las plantas de maíz que expresan la proteína CP4 EPSPS, las plantas no se ven afectadas ya que, al seguir actuando la enzima CP4 EPSPS tolerante, la planta puede seguir generando los aminoácidos aromáticos que necesita.

El maíz NK603 x MON 810 también expresa la proteína Cry1A(b), que le proporciona protección frente a ciertas plagas de insectos lepidópteros, incluyendo los taladros del maíz *Ostrinia nubilalis* y *Sesamia* spp. La actividad insecticida de la proteína Cry1A(b) es específica para la depredación de las larvas de lepidópteros objetivo.

3. Tipo de modificación genética

(a) Inserción de material genético (Si, en las líneas parentales NK603 y MON 810, y heredada en el híbrido NK603 x MON 810)

El maíz híbrido NK603 x MON 810 es una combinación obtenida por cruce convencional de dos parentales líneas puras genéticamente modificadas, derivadas de los maíces NK603 y MON 810, respectivamente. Ninguna modificación genética adicional está involucrada.

- (b) Deleción del material genético (No)
- (c) Sustitución de bases (No)
- (d) Fusión celular (No)
- (e) Otras, especificidad (No)

4. En el caso de inserción de material genético, describir el origen y la función de cada componente del fragmento de ADN insertado

El maíz NK603 x MON 810 se obtiene por cruzamiento de las líneas puras de maíz NK603 y MON 810, homocigóticas para sus respectivos caracteres introducidos.

El híbrido NK603 x MON 810 hereda los fragmentos de ADN insertados en cada uno de los parentales. Los componentes individuales y la función de las secuencias heredadas se muestran en las Tablas 1 y 2.

Tabla 1. Componentes de los fragmentos de ADN heredados insertados en el maíz NK603

Elementos Genéticos	Origen	Tamaño (kb)	Función
Primer casete gé	nico <i>cp4 epsps</i>		
Intrón P-ract1/ract1	Oryza sativa	1.4	Contiene el promotor, sitio de inicio de la transcripción y el primer intrón
Ctp 2	Arabidopsis thaliana	0.2	Codifica el péptido de tránsito al cloroplasto, que dirige la proteína CP4 EPSPS al cloroplasto
Cp4 epsps	Agrobacterium sp. cepa CP4	1.4	Codifica la proteína CP4 EPSPS tolerante a glifosato
NOS 3'	Agrobacterium tumefaciens	0.3	Termina la transcripción y dirige la poliadenilación del mARN

Tabla 1. Componentes de los fragmentos de ADN heredados insertados en el maíz NK6003 (Cont.)

Segundo	casete	génico	cp4	epsps

e35S	Virus del mosaico de la coliflor	0.6	Promotor
Zmhsp70	Zea mays L.	0.8	Estabiliza el nivel de transcripción del gen
Ctp 2	Arabidopsis thaliana	0.2	Codifica el péptido de tránsito al cloroplasto, que dirige la proteína CP4 EPSPS al cloroplasto
Cp4 epsps l214p	Agrobacterium sp. cepa CP4	1.4	Codifica la proteína CP4 EPSPS L214P ¹ tolerante a glifosato
NOS 3'	Agrobacterium tumefaciens	0.3	Termina la transcripción y dirige la poliadenilación del mARN

Tabla 2. Componentes del fragmento insertado de ADN heredado del maíz MON 810

Elemento Genético	Origen	Tamaño (kb)	Función
e35S	Virus del mosaico de la coliflor	0.32	Promotor
Zmhsp70	Zea mays L.	0.8	Estabiliza el nivel de la transcripción del gen.
Cry1A(b)	Bacillus thuringiensis	2.45	Codifica la proteína Cryl A(b), que confiere resistencia frente a plagas de insectos lepidópteros

¹ La sustitución de una leucina por una prolina en la proteína CP4 EPSPS codificada por el segundo casete génico *cp4 epsps* en el inserto del maíz NK603, es indicado por el sufijo L214P.

5. En caso de deleción u otra modificación de material genético, indicar la función de las secuencias suprimidas o modificadas

No aplicable.

6. Breve descripción de los métodos usados para la modificación genética

El maíz híbrido NK603 x MON 810 se obtuvo por cruce tradicional. No se utilizó ninguna modificación genética en la producción de variedades híbridas de maíz NK603 x MON 810 sino que se cruzaron convencionalmente líneas puras de maíz NK603 y MON 810 (homocigóticas para sus respectivos caracteres introducidos). La semilla híbrida F1 hereda los caracteres introducidos de tolerancia a glifosato por el maíz NK603 y protección frente a insectos del maíz MON 810.

Mientras que el maíz híbrido NK603 x MON 810 procede de cruce convencional, el desarrollo de cada uno de los parentales NK603 y MON 810 se realizó por modificación genética. Los parentales se modificaron genéticamente utilizando un método de aceleración de partículas.

7. Si la planta parental es una especie forestal arbórea, describir las vías y extensión de la diseminación y los factores específicos que la afectan.

No aplicable.

C. INFORMACIÓN SOBRE LA LIBERACIÓN EXPERIMENTAL

1. Objetivos de la liberación (incluyendo cualquier información relevante disponible en este estadio) como objetivos agronómicos, test de hibridación, cambios en la supervivencia o en la diseminación, test de efectos en organismos objetivo y no-objetivo

La liberación tiene como objetivo continuar con la caracterización agronómica y desarrollo de variedades de maíz NK603 x MON 810, optimizar los programas de manejo de malas hierbas con las mismas, para posible cultivo por los agricultores españoles y estudio sobre efectos potenciales en organismos no objetivo.

Los híbridos de maíz NK603 x MON 810 se han obtenido por el cruce tradicional de dos parentales, líneas puras de maíz modificadas genéticamente, una derivada del maíz NK603 (que es tolerante al herbicida glifosato) y la segunda derivada del maíz MON 810 (que está protegido frente a ciertas plagas de insectos lepidópteros).

2. Localización geográfica del lugar de la liberación

Las parcelas seleccionadas para los ensayos se encuentran en las siguientes localidades:

- Bujaraloz (Zaragoza)
- Tauste (Zaragoza)
- Zuera (Zaragoza)
- Grañén (Huesca)
- Peñalva (Huesca)
- Ejea de los Caballeros (1) (Zaragoza)
- Ejea de los Caballeros (2) (Zaragoza)

3. Tamaño del sitio (m²)

La superficie potencialmente ocupada por maíz NK603 x MON 810, en cada campo será:

- Bujaraloz (Zaragoza): 10.000 m²
- Tauste (Zaragoza): 1.000 m²
- Zuera (Zaragoza): 1.000 m²
- Grañén (Huesca): 5.000 m²
- Peñalva (Huesca): 14.000 m²
- Ejea de los Caballeros (1) (Zaragoza): 5.000 m²
- Ejea de los Caballeros (2) (Zaragoza): 5.000 m²

4. Datos relevantes en cuanto a liberaciones anteriores llevadas a cabo con la misma planta genéticamente modificada, si existen, específicamente relacionados con los posibles impactos en el medio ambiente y la salud humana

La supervivencia general tras la liberación en ambientes dentro y fuera de la UE ha mostrado que el maíz NK603 x MON 810 y los rasgos de sus líneas parentales, maíces NK603 y MON 810, no plantean riesgo alguno de efectos adversos para la salud humana o animal, o para el medio ambiente

D. RESUMEN DEL POSIBLE IMPACTO AMBIENTAL DEBIDO A LA LIBERACIÓN DE LA PSMG DE ACUERDO CON EL APARTADO D2 DEL ANEXO II DE LA DIRECTIVA 2001/18/EC

Observe sobre todo si los rasgos presentados directa o indirectamente pudieran conferir una ventaja selectiva en ambientes naturales; explicar también cualquier ventaja significativa esperada en el medio ambiente.

El análisis de las características del maíz NK603 x MON 810, especialmente en comparación con la extensa experiencia de cultivo de maíz tradicional en la UE, ha mostrado que el riesgo potencial de efectos adversos para la salud humana o animal y para el medio ambiente, resultante de los ensayos de campo solicitados para el maíz NK603 x MON 810, es insignificante:

- El riesgo de que el carácter introducido en el maíz NK603 x MON 810 sea causa de cualquier ventaja o desventaja competitiva significativa en los ambientes naturales, es insignificante. Como cualquier otro maíz, la probabilidad de que se extienda en ambientes no agronómicos es despreciable, así como que su persistencia en hábitats agrícolas y la invasión de hábitats naturales no se alteran en comparación con el maíz tradicional.
- Como para el parental maíz MON 810, el maíz NK603 x MON 810 posee un riesgo insignificante de producir efectos adversos debido a su interacción con organismos objetivo. Las interacciones ecológicas del maíz NK603 x MON 810 con organismos no-objetivo o procesos del suelo, no son diferentes de las del maíz tradicional. La exposición potencial de los organismos no-objetivo a CP4 EPSPS no causa efectos adversos, y debido a la alta actividad insecticida de la proteína Cry1A(b) selectiva para las larvas de plagas específicas de insectos Lepidópteros objetivo, también esta proteína posee un riesgo despreciable para los organismos no objetivo.
- Cualquier aspecto sanitario relacionado con el manejo del maíz NK603 x MON 810 no presenta diferencias respecto al maíz tradicional, y además se ha demostrado que este maíz es tan seguro y tan nutritivo como cualquier otro maíz.
- El impacto medio ambiental de las técnicas de cultivo, manejo y cosecha aplicadas en los ensayos no se consideran diferentes de las prácticas agrícolas para el maíz tradicional.

Se espera que la producción comercial del maíz NK603 x MON 810 impacte positivamente en las prácticas agronómicas actuales de maíz y que beneficie a los agricultores y al medio ambiente. El uso de glifosato en maíz permite al agricultor aprovechar las propiedades favorables ambientales y de seguridad del herbicida (ver Anexo I listado de glifosato bajo la Directiva 91/414/EEC del Consejo). El maíz tolerante a glifosato beneficia al agricultor proporcionándole: (1) una opción adicional de amplio espectro para el control de las malas hierbas; (2) un nuevo modo de acción herbicida para control de malas hierbas durante el crecimiento del maíz; (3) un incremento en la flexibilidad del tratamiento de las malas hierbas cuando sea necesario; (4) un control de las malas hierbas a un coste efectivo; y, (5) un ajuste excelente con los sistemas de mínimo o no laboreo, que aportan beneficios ambientales, como una mejora de la calidad del suelo, reducción de la erosión y del lavado de nutrientes y plaguicidas hacia las aguas superficiales, mejora del hábitat salvaje, incremento

en la retención del carbono en el suelo y reducción del uso de combustible.

Otros beneficios del cultivo de este maíz provienen de su carácter de protección frente a insectos e incluye: 1) un medio fiable de control de los taladros del maíz, plagas de importancia económica en zonas de cultivo de maíz en nuestro país; 2) control de insectos objetivo mientras se mantienen las especies beneficiosas; 3) reducción del uso de insecticidas químicos y de la exposición del aplicador a ellos; 4) herramienta para un manejo integrado de plagas (IPM) y sistemas de agricultura sostenible; 5) posibilidad de reducir los niveles de micotoxinas (fumonisinas) en granos de maíz; y, 6) menos requerimientos de vigilancia, maquinaria para tratamientos, etc, permitiendo tanto a agricultores grandes como pequeños maximizar la producción.

E. BREVE DESCRIPCIÓN DE CUALQUIER: MEDIDA TOMADA POR EL NOTIFICADOR PARA EL CONTROL DEL RIESGO

La evaluación del riesgo medioambiental ha indicado que el riesgo de este maíz es despreciable. Así, estrategias de manejo del riesgo para el maíz NK603 x MON 810 podrían ser las mismas que para el maíz tradicional.

No obstante, además de las observaciones de los parámetros fenotípicos y agronómicos que forman la base de los ensayos propuestos, la zona del ensayo será revisada regularmente durante el periodo de la liberación para cualquier efecto potencial adverso para el medio ambiente, directo o indirecto, que pudiera ocurrir. Esto se realizará por inspección visual de los estados del cultivo del maíz NK603 x MON 810 y de su interacción con el medio ambiente. En el caso de efectos medioambientales adversos, asociados a la liberación del maíz NK603 x MON 810, observados durante el periodo de la liberación, serían comunicados inmediatamente a la Autoridad Competente.

La separación espacial (200 m) con otros campos de maíz cercanos, junto con la barrera de al menos cuatro líneas de maíz convencional que rodearán el ensayo prevendrán el riesgo de hibridación con otras plantas de maíz

Los equipos empleados, en especial la sembradora y la cosechadora, se limpiarán en el lugar del ensayo, previniendo así la diseminación de las semillas.

Tras completar la cosecha, se trocearán los tallos y se enterrarán en el suelo. No se permitirá que ninguna semilla troceada germine. Las plántulas resultantes se destruirán enterrándolas en el suelo.

Aunque el rebrote es poco probable en la rotación de cultivos por la débil supervivencia invernal, el lugar se sembrará con un cultivo diferente del maíz o con maíz experimental que se destruirá, y que no se destinará a la alimentación, al comercio o a la industria. Los ricios que pudieran aparecer se controlarán mediante destrucción mecánica o empleo de herbicidas no selectivos.

Las semillas se transportarán en bolsas bien cerradas y etiquetadas. Al final de la campaña de ensayos de campo, el notificador enviará un informe a la Autoridad Competente. Este estudio detallará cualquier efecto adverso para el medio ambiente inesperado que sea observado durante la vigilancia general, si se da el caso, y demás acciones realizadas como consecuencia de estas observaciones, en caso de darse.

F. RESUMEN DE LOS ENSAYOS PLANEADOS DE CAMPO DESIGNADOS PARA OBTENER NUEVOS DATOS ACERCA DEL IMPACTO SOBRE LA SALUD HUMANA Y AMBIENTAL DE LA LIBERACIÓN (DONDE SEA APROPIADO)

No aplicable.

Sin embargo, cualquier efecto inesperado adverso para la salud humana o para el medio ambiente, podría ser remitido inmediatamente a la Autoridad Competente.