

RED EUROPEA DE SEGUIMIENTO INTENSIVO Y CONTINUO DE LOS ECOSISTEMAS FORESTALES

RED DE NIVEL II MEMORIA – 2021

PARCELA 11 Qs (CACERES)

2021

DIRECCIÓN GENERAL DE BIODIVERSIDAD, BOSQUES Y DESERTIFICACIÓN

SUBDIRECCIÓN GENERAL DE POLÍTICA FORESTAL Y LUCHA CONTRA LA DESERTIFICACIÓN ÁREA DE INVENTARIO Y ESTADÍSTICAS FORESTALES

Tecmena, s. l.
TECNICAS DEL MEDIO NATURAL

Clara del Rey, 22 28002 Madrid Tel. 91 413 70 07 Fax. 91 510 20 57 correo@tecmena.com

RED EUROPEA DE SEGUIMIENTO INTENSIVO Y CONTINUO DE LOS ECOSISTEMAS FORESTALES — RED DE NIVEL II

11 Qs (CÁCERES)

Año 2021

Índice

	Situación de la parcela	1
2.	Caracterización de la parcela	2
	2.1. Climatología	2
	2.2. Geología y suelos	3
	2.3. Vegetación	5
	2.4. Caracterización forestal y dasométrica	6
3.	Estado fitosanitario de la parcela	7
	3.1. Defoliación y decoloración	7
	3.2. Danos forestales	8
4.	Instrumentación	18
	Deposición atmosférica	20
	5.1. pH	22
	5.2. Conductividad	23
	5.3. Potasio	24
	5.4. Calcio	25
	5.5. Magnesio	27
	5.6. Sodio	28
	5.7. Amonio	29
	5.8. Cloro	30
	5.9. Nitratos	32
	5.10. Sulfatos	33
	5.11. Alcalinidad	34
	5.12. Nitrógeno total	35
	5.13. Carbono orgánico disuelto	37
	5.14. Aluminio	37
	5.15. Manganeso.	38
	5.16. Hierro	39
	5.17. Interpretación de resultados	40
6.	Calidad del aire. Inmisión	41
	Análisis foliar	43
	7.1. Macronutrientes	43
	7.2. Micronutrientes	45
	7.3. Interpretación de resultados	46
8.	Desfronde	47
	Fenología	50
	Cintas diamétricas	52
	. Meteorología	53
	Índice de Área Foliar	55

INDICE DE TABLAS

	_	~			
TABLA	1:	Características	de	la	parcela.

- TABLA 2: Datos meteorológicos parcela.
- **TABLA 3**: Inventario florístico 2007-2009
- TABLA 4: Características dasométricas
- TABLA 5: Distribución de agentes dañinos en la parcela
- **TABLA 6:** Distribución de síntomas y signos en la parcela
- TABLA 7: Relación entre agentes, síntomas y signos observados
- TABLA 8: Equipos de medición instalados
- TABLA 9: Parámetros descriptores de la deposición atmosférica
- TABLA 10: Caracterización pH
- TABLA 11: Caracterización conductividad
- TABLA 12: Caracterización potasio
- TABLA 13: Caracterización calcio
- TABLA 14: Caracterización magnesio

RED EUROPEA DE SEGUIMIENTO INTENSIVO Y CONTINUO DE LOS ECOSISTEMAS FORESTALES — RED DE NIVEL II

Año 2021

11 Qs (CÁCERES)

TABLA 16: Caracterización amonio

TABLA 17: Caracterización cloro

TABLA 18: Caracterización nitratos

TABLA 19: Caracterización sulfatos

TABLA 20: Caracterización alcalinidad

TABLA 21: Caracterización nitrógeno total

TABLA 22: Caracterización carbono orgánico disuelto

TABLA 23: Caracterización aluminio

TABLA 24: Caracterización manganeso

TABLA 25: Caracterización hierro

TABLA 26: Valores de referencia de inmisión atmosférica

TABLA 27: Inmisión atmosférica

TABLA 28: Análisis foliares por campaña bianual de muestreo para la parcela y especie. Macronutrientes

TABLA 29: Análisis foliares por campaña bianual de muestreo para la parcela y especie. Micronutrientes

TABLA 30: Resultados medios del análisis de desfronde

TABLA 31: Resultados de la evaluación fenológica

TABLA 32: Valor medio dendrómetros

TABLA 33: Valores medios meteorológicos

TABLA 34: Parámetros de estrés meteorológico

TABLA 35: Índices de Área Foliar

INDICE DE FIGURAS

FIG 1: Posición y vistas de la parcela

FIG 2: Climodiagrama de la parcela

FIG 3: Caracterización dasométrica de la parcela

FIG 4: Histograma de defoliaciones por clases de daño y defoliación media

FIG 5: Tipos de defoliación

FIG 6: Daños forestales

FIG 7: Instrumentación

FIG 8: Variación temporal de pH

FIG 9: Variación temporal de conductividad

FIG 10: Variación temporal de potasio

FIG 11: Variación temporal de calcio

FIG 12: Variación temporal de magnesio

FIG 13: Variación temporal de sodio

FIG 14: Variación temporal de amonio

FIG 15: Variación temporal de cloro

FIG 16: Variación temporal de nitratos

FIG 17: Variación temporal de sulfatos

FIG 18: Variación temporal de alcalinidad

FIG 19: Variación temporal de nitrógeno total

FIG 20: Variación temporal de carbono orgánico disuelto

FIG 21: Variación temporal de aluminio

FIG 22: Variación temporal de manganeso

FIG 23: Variación temporal de hierro

FIG 24: Variación temporal de inmisión por dosímetros

FIG 25: Evolución de macronutrientes

FIG 26: Evolución de micronutrientes

FIG 27: Fracciones de desfronde o litterfall. Serie histórica

FIG 28: Fases fenológicas. Inicio de fase

FIG 29: Fases fenológicas

FIG 30: Crecimiento diametral anual

FIG 31: Principales variables meteorológicas

FIG 32: Índices de Área Foliar

FIG 33: Fotos hemisféricas

1. Situación de la parcela.

La parcela representa el alcornocal de *Quercus suber* del subsector Hurdano, sector Toledano-Tagano de la provincia Luso-Extremadurense (Rivas Martínez).

Sus principales características se resumen en la siguiente tabla:

TABLA 1: Características de la parcela.

PARCELA	ESPECIE	PROVINCIA	T. MUNICIPAL	REPLANTEO	NIVEL
11 Qs	Quercus suber	Cáceres	Villanueva de la Sierra	20/07/1994	III

LATITUD	LONGITUD	XUTM	YUTM	ALTITUD	PENDIENTE	ORIENTACIÓN	PARAJE
+40011'00"	-06 ⁰ 27'00"	206.000	4.455.000	455	2	Sureste	El Carrascal

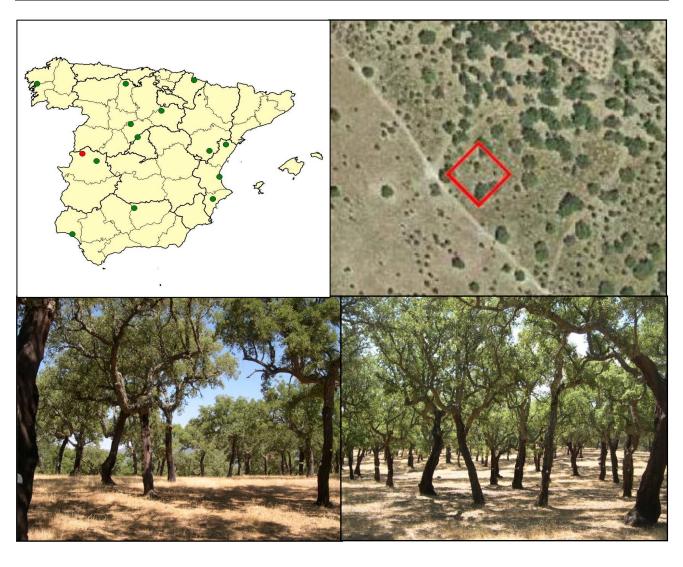


FIG 1: Posición y vistas de la parcela 11Qs

2. Caracterización de la parcela.

2.1. Climatología.

Las principales características de la parcela se dan en la siguiente tabla:

TABLA 2: Datos meteorológicos estación ecológica (Modelos y Cartografía de Estimaciones Climáticas Termopluviométricas de la España Peninsular. Sánchez Palomares et al. Datación 1940-1990. INIA, 1999).

	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	AÑO
T(°C)	7,7	8,4	11	13,8	18	21,9	25,3	24,8	22,2	17,1	10,7	7,2	15,7
P(mm)	142	127	131	70	64	36	6	9	54	93	138	110	978
	T. Media Máximas Mes más Cálido 35,1												
T. Media Mínimas Mes más frío								2,6					

De acuerdo a clasificación de Allué, el clima se corresponde con un IV4 *Mediterráneo genuino*. De acuerdo a la clasificación en pisos bioclimáticos, la parcela se encuentra en el *Piso Mesomediterráneo*.

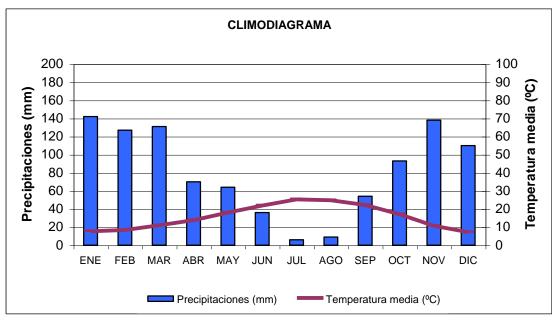
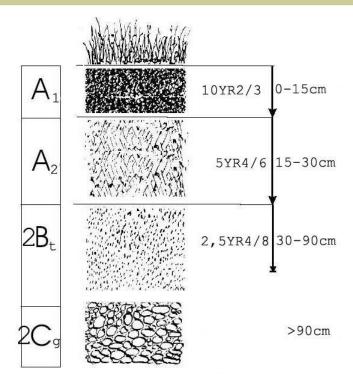


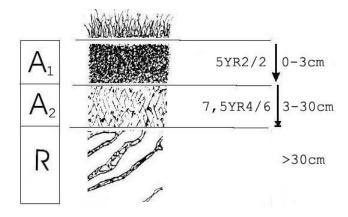
FIG 2: Climodiagrama de la parcela

2.2. Geología y Suelos.


Litología: Material resultante de la alteración de pizarras oscuras ricas en hierro.

Edafología: Haplic acrisol / Dystric leptosol.

Haplic acrisol: Es un suelo pobre en elementos nutritivos y con arcillas de baja actividad.



Horizonte	Espesor (cm)	Descripción
A ₁	0-3	Pardo oscuro (7.5 YR 3/2) en húmedo; limoso; estructura grumosa, muy fina, moderada; muy friable en húmedo; posibles cutanes, de difícil apreciación; frecuentes raíces de todos los tamaños; muy poroso; ligera actividad de la fauna; límite brusco y piano.
A_2	3-17	Rojo amarillento (5 YR 4/6) en húmedo; limo-arcilloso; 35 de gravillas de pizarra y cuarzo, pizarra y cuarzo, (2 cm); estructura grumosa, fina, débil; muy friable en húmedo; frecuentes raíces de todos los tamaños; muy poroso; poca actividad de la fauna; límite neto y plano.
B_{t1}	17-50	Rojo oscuro (2.5 YR 3/5) en húmedo; arcilloso; 5% de gravillas de pizarra y cuarzo; estructura grumosa, fina, fuerte-mediana; muy friable en húmedo; posibles cutanes, de difícil apreciación; frecuentes raíces de todos los tamaños; muy poroso; fuerte actividad de la fauna; límite plano y difuso.
B _{t2}	50-100	Rojo oscuro (2.5 YR 3.5/6) en húmedo; arcilloso; 15% de gravillas de pizarra y cuarzo; estructura poliédrica subangular, muy fina, fuertemoderada; muy friable en húmedo; cutanes de arcilla delgados y zonales, en caras estructurales y paredes de los poros; frecuentes raíces de todos los tamaños; muy poroso; buena actividad de la fauna; límite difuso y plano.
R	100	Pizarra de color oscuro, con cutanes de arcilla en los pianos de la estratificación.

Horizonte	Espesor (cm)	Descripción
Α,	0-15	Pardo amarillento oscuro (10 YR 2/3) en húmedo; limo-arenoso; 10% de gravillas de cuarzo y pizarra; estructura grumosa, muy fina, moderada, fuerte; muy friable en húmedo; frecuentes raíces, muy finas (2mm); muy poroso; buena actividad de la fauna (lombrices); límite gradual y plano.
A_2	15-30	Rojo amarillento (5 YR 4/6) en húmedo; limoso; 30% de gravillas de pizarra roja (3cm); estructura grumosa, muy fina, moderada; muy friable en húmedo; frecuentes raíces muy finas (2mm); muy poroso; ligera-moderada actividad de la fauna; límite gradual y plano.
2B _t	30-90	Rojo oscuro (2.5 YR 4/8) en húmedo; limo-arcilloso; 15% de gravillas de pizarra negra; estructura poliédrica, muy fina, moderada; cutanes de arcilla, moderadamente espesos y continuos, en caras estructurales y paredes de los poros; pocas raíces; muy ligera actividad de la fauna; limite difuso y plano.
2Cg	90	Pizarra alterada de tonos muy rojos (2.5 YR 4/8) alternando con pizarra negra sin alterar; vetas grises (5Y 6/2) de hidromorfismo.

Dystric leptosol: Ocupa parte superior de la parcela. La posición topográfica explica la erosión total del suelo original y la existencia de suelo poco desarrollado. Es delgado y ofrece poco volumen para desarrollo radicular.

Horizonte	Espesor (cm)	Descripción
A_1	0-3	Pardo rojizo oscuro (5 YR 2/2) en húmedo; limoso; estructura grumosa, fina, moderada-fuerte; muy friable en húmedo; pocas raíces, muy finas; muy poroso; ligera actividad de la fauna; límite brusco y plano.
A ₂	3-30	Pardo oscuro (7.5 YR 4/6) en húmedo; limo-arenoso; 10% de gravillas de pizarra y cuarzo, (3 cm); estructura poliédrica angular, muy fina, débil; muy friable en húmedo; pocas raíces muy finas, (0.5 cm); frecuentes poros, muy finos; apreciables tubos de lombrices; límite difuso y plano.
R	>30	Pizarras negras; cutanes de arcilla en los planos de estratificación.

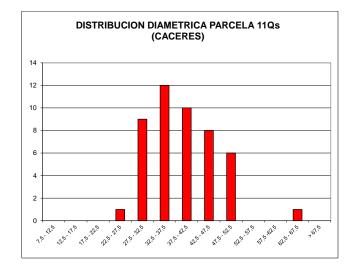
2.3. Vegetación.

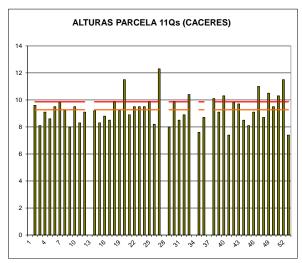
Vegetación actual: Estrato arbóreo monoespecífico de *Quercus suber* con pies añosos y descorchados, adehesado, con subvuelo de pastizal de terófitos ralo y discontinuo.

TABLA 3: Inventario florístico 2007-2009

	Cob		Cob
ESTRATO ARBÓREO	58,0	Lolium rigidum Gaudin	+
Quercus suber L.	58,0	Lotus corniculatus L.	+
EST. SUBARBUSTIVO-HERBACEO	33,5	Lotus parviflorus Desf.	+
Agrostis castellana Boiss. & Reuter	+	Medicago polymorpha L.	+
Aira caryophyllea L.	+	Ornithopus compressus L.	2,5
Andryala laxiflora DC.	+	Ornithopus perpusillus L.	+
Anthemis arvensis L.	+	Ornithopus pinnatus (Miller) Druce	+
Anthoxanthum aristatum Boiss.	+	Plantago bellardii All.	+
Asterolinon linum-stellatum (L.) Duby	+	Plantago lanceolata L.	+
Avenula marginata (Lowe) J. Holub	+	Quercus suber L.	+
Bellis sylvestris Cyr.	+	Sherardia arvensis L.	+
Brachypodium distachyon (L.) Beauv.	3,5	Silene gallica L.	+
Briza maxima L.	+	Tolpis barbata (L.) Gaertner	+
Briza minor L.	+	Trifolium angustifolium L.	+
Bromus madritensis L.	+	Trifolium arvense L.	+
Carlina corymbosa L.	+	Trifolium bocconei Savi	+
Cistus ladanifer L.	+	Trifolium campestre Schreber	+
Coronilla repanda (Poiret) Guss.	0,6	Trifolium cherleri L.	+
Crucianella angustifolia L.	+	Trifolium glomeratum L.	+

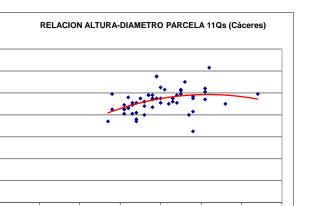
	Cob		Cob
Cynosurus echinatus L.	+	Trifolium hirtum All.	1,0
Gaudinia fragilis (L.) Beauv.	+	Trifolium ligusticum Balbis ex Loisel.	+
Geranium molle L.	+	Trifolium scabrum L.	+
Hippocrepis sp.	+	Trifolium stellatum L.	+
Holcus lanatus L.	+	Trifolium striatum L.	+
Anthyllis lotoides L.	+	Trifolium strictum L.	+
Hypochoeris glabra L.	+	Vulpia myuros (L.) C.C. Gmelin	3,0
Jasione montana L.	+	ESTRATO MUSCINAL-LIQUENICO	2,0
Leontodon taraxacoides (Vill.) Mérat	+	Hypnum cupressiforme Hedw.	2,0
Logfia gallica (L.) Cosson & Germ.	+		


Vegetación potencial: La parcela se encuentra en la serie 24 c, Serie mesomediterránea luso-extremadurense seco-subhúmeda silicícola de la encina (Quercus rotundifolia). Pyro bourgaeanae-Querceto rotundifoliae sigmetum.


2.4. Caracterización forestal y dasométrica.

La parcela se sitúa en una masa monoespecífica regular de alcornoque en estado de fustal de 80-100 años de edad, cuyas características principales se resumen a continuación:

TABLA 4: Características dasométricas. Área de la parcela, número de pies en la parcela, densidad en pies/ha, Número de pies de la especie principal, número de pies de otras especies, número de pies muertos, edad media, diámetro medio, área basimétrica, diámetro medio cuadrático, altura media, altura dominante según criterio diámetro, existencias.


Parcela	Área ha	N par	N/ha	Sp.p	Otras	Muerto	Edad (años)	D med (cm)	AB (m²/ha)	D m c (cm)	Alt m (m)	Alt do (m)	Exist (m ³ cc)
11 Qs	0,2500	47	188	47	0	6	101-120	38,89	23,17	39,61	9,29	9,88	13,58

14 12 10

0

CD	N parc	N ha	h	Esb	Exist parc	Exist ha
7,5 - 12,5						
12,5-17,5						
17,5-22,5						
22,5-27,5						
27,5-32,5	1	4	7,93	31,73	0,15	0,59
32,5-37,5	9	36	8,61	28,69	1,65	6,59
37,5-42,5	12	48	9,15	26,14	2,73	10,90
42,5-47,5	10	40	9,55	23,88	2,96	11,85
47,5-52,5	8	32	9,82	21,83	2,81	11,22
52,5-57,5	6	24	9,96	19,91	2,58	10,31
57,5-62,5						
62,5-67,5						·
> 62,5	1	4	9,55	14,69	0,72	2,86
TOTAL	47	188			13,58	54,33

FIG 3: Distribución diamétrica de la parcela; distribución de alturas y comparación con las alturas media y dominante; relación de alturas-diámetros; frecuencias, alturas, esbelteces y existencias por clase diamétrica.

3. Estado fitosanitario de la parcela.

3.1. Defoliación y decoloración.

En la presente revisión, la parcela presenta un buen estado fitosanitario, con una defoliación media del 23,13%, dentro por tanto de la escala de daños ligeros, categoría en la que se han calificado cerca del 90% de los pies evaluados, en lo que supone un empeoramiento del estado fitosanitario respecto a la revisión anterior; no tanto por lo que se refiere a la defoliación media, que con un incremento de cerca de dos puntos porcentuales, se sitúa lejos del umbral de cinco que supondría una variación estadísticamente significativa de acuerdo con la normativa europea en materia de redes forestales, sino por lo que se refiere a la distribución por clases de daño, al incrementarse considerablemente los pies calificados con daños moderados. Cabe hacer constar, sin embargo, la muerte de otro de los pies muestra debido a la acción del perforador Cerambyx wellensii.

Atendiendo a la serie histórica de daños, el arbolado continúa presentando una buena distribución si bien se interrumpe el proceso de mejoría que venía observándose durante el lustro anterior, lejos sin embargo de los esporádicos malos resultados habidos en el periodo previo

En la idea de este empeoramiento del estado se comporta la decoloración, el segundo gran parámetro definitorio de su estado, que tras no advertirse en la revisión previa, se manifiesta de forma ligera en alguno de los pies vivos del año en curso.

Cabe destacar también que durante la presente revisión se ha vuelto a descorchar la parcela, dentro del normal aprovechamiento del monte en el que se encuentra, operación que se hace cada diez años aproximadamente.

Los principales resultados pueden verse en el gráfico adjunto:

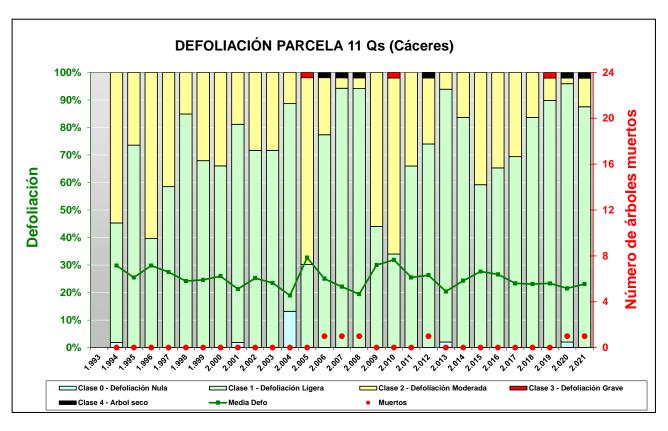


FIG 4: Histograma de defoliaciones por clases de daño y defoliación media de la parcela. Serie histórica.

 \boldsymbol{FIG} 5: Defoliación 15% , 25% y 45%

3.2. Daños forestales.

Los principales agentes dañinos identificados se resumen en la siguiente tabla, indicándose el número de pies afectados, sus características dendrométricas, defoliación y decoloración asociadas y la diferencia con los valores medios de la parcela.

TABLA 5: Distribución de agentes dañinos en la parcela: pies afectados (Npar), Extensión de los daños en clases de porcentajes en grado de 1 a 7 (Extensión), pies afectados por ha (N/ha), porcentaje de pies afectados (%), defoliación y decoloración de los pies afectados por cada agente (Defo/Deco), diferencia de las defoliaciones y decoloraciones con las medias de la parcela (DifDefo y DifDeco, marcados en rojo si el valor de los pies afectados es superior al valor medio de la parcela y en verde en caso contrario), diámetro (Diam) y altura medias (Alt) de los pies afectados por cada agente y diferencias con los valores medios de la parcela (DifDiam y DifAlt).

	N par	Extensión	N/ha	%	Defo	Deco	Dif	Dif	Diam	Alt	Dif	Dif
INSECTOS	•						Defo	Deco			Diam	Alt
	20	1.00	150	70 17	21 10	0.00	1.05	0.10	46.07	0.22	1.70	0.02
Defoliadores Hojas	38 38	1,00	152 152	79,17 79,17	21,18 21,18	0,00	-1,95	-0,10	46,97 46,97	9,32 9,32	1,70 1,70	0,03
Perforadores	48	· ·	192	100,00		0,00	-1,95	-0,10		9,32	0,22	0,03
Cerambyx wellensii		2,21 1,00			40,00	0,02	16,87	-0,10	48,00	8,30	2,72	-0,99
Tronco	1	1,00	4	2,08		0,00	16,87	-0,10	48,00	8,30	2,72	-0,99
Coroebus florentinus	10	1,00	40	20,83		0,00	2,37	-0,10	39,60	9,28	-5,68	-0,99
Ramillos <2 cm	10	1,00	40	20,83		0,00	2,37	-0,10	39,60	9,28	-5,68	-0,01
Coroebus undatus	37	2,57	148	77,08	_	0,03	-2,45	-0,10	47,03	9,41	1,75	0,11
Tronco	37	2,57	148	77,08	20,68	0,03	-2,45	-0,07	47,03	9,41	1,75	0,11
Form. Agallas	5	1,00	20	10,42	17,00	0,00	-6,13	-0,10	36,40	9,18	-8,88	-0,11
Andricus sp	3	1,00	12	6,25	18,33	0,00	-4,80	-0,10	39,00	9,40	-6,28	0,11
Hojas	3	1,00	12	6,25		0,00	-4,80	-0,10		9,40	-6,28	0,11
Dryomyia lichtensteini	2	1,00	8	4,17	15,00	0,00	-8,13	-0,10	32,50	8,85	-12,78	-0,44
Hojas	2	1,00	8	4,17	15,00	0,00	-8,13	-0,10	32,50	8,85		-0,44
ENFERMEDADES		-,00		1,27	,	0,00			,	-,	,	
Tizón	23	1,00	92	47,92	21.30	0,09	-1,83	-0,01	50,61	9,33	5,33	0,04
Botryosphaeria stevensii	9	1,00	36	18,75	22,22	0,11	-0,91	0,01	37,22	9,02	-8,05	-0,27
Brotes del año	9	1,00	36	18,75	22,22	0,11	-0,91	0,01	37,22	9,02	-8,05	-0,27
Hypoxilon mediterraneum	14	1,00	56	29,17	20,71	0,07	-2,42	-0,03	59,21	9,54	13,94	0,24
Ramillos <2 cm	9	1,00	36	18,75		0,11	-0,35	0,01	69,89	9,12	24,61	-0,17
Ramas 2-10 cm	5	1,00	20	10,42		0,00	-6,13	-0,10	40,00	10,28	-5,28	0,99
AG.ABIÓTICOS				·			ŕ					
Calor	47	2,85	188	97,92	21,49	0,02	-1,64	-0,08	45,28	9,29	0,00	0,00
Hojas	47	2,85	188	97,92	21,49	0,02	-1,64	-0,08		9,29	0,00	0,00
Viento/Tornado	1	1,00	4	2,08	35,00	0,00	11,87	-0,10	35,00	9,50	-10,28	0,21
Ramillos <2 cm	1	1,00	4	2,08	35,00	0,00	11,87	-0,10	35,00	9,50	-10,28	0,21
ANTRÓPICOS												
Descorche	46	6,98	184	95,83	21,09	0,02	-2,04	-0,08	45,22	9,31	-0,06	0,02
Tronco	46	6,98	184	95,83	21,09	0,02	-2,04	-0,08	45,22	9,31	-0,06	0,02
OTROS DAÑOS												
Bacterias	1	1,00	4	2,08	40,00	0,00	16,87	-0,10	48,00	8,30	2,72	-0,99
Tronco	1	1,00	4	2,08	40,00	0,00	16,87		48,00	8,30	2,72	
AG.DESCONOCIDO												
Ag.desconocido	39	1,26	156	81,25	22,56	0,03	-0,57	-0,07	40,54	9,29	-4,74	0,00
Hojas	4	1,00	16		30,00		6,87	0,15		9,15	-5,03	
Brotes del año	19	1,00	76	39,58	21,32	0,00	-1,81	-0,10	41,37	9,54	-3,91	0,25
Ramillos <2 cm	5	1,00	20	10,42	21,00	0,00	-2,13	-0,10	38,00	8,92	-7,28	-0,37
Ramas 2-10 cm	1	1,00	4	2,08	25,00	0,00	1,87	-0,10	64,00	9,90	18,72	0,61
Ramas >10 cm	1	2,00	4	2,08	20,00	0,00	-3,13	-0,10	40,00	9,50	-5,28	0,21
Tronco	8	1,88	32	16,67	22,50	0,00	-0,63	-0,10	38,50	8,96	-6,78	-0,33
Tronco completo	1	3,00	4	2,08	25,00	0,00	1,87	-0,10	32,00	8,70	-13,28	-0,59

RED EUROPEA DE SEGUIMIENTO INTENSIVO Y CONTINUO DE LOS ECOSISTEMAS FORESTALES — RED DE NIVEL II

11 Qs (CACERES)

Año 2021

En cuanto al conjunto de agentes dañinos identificados, destaca en primer lugar, la presencia de **defoliadores** tortrícidos en cerca del 80% del arbolado muestra —en lo que supone un marcado incrememento respecto a la revisión anterior- de quienes se ven las habituales mordeduras y festoneados a lo largo del margen foliar, junto con esqueletizaciones (pérdida del tejido foliar mientras se mantiene el conductor dando a la hoja un aspecto de retícula), en un patrón ya observado en anteriores evaluaciones aunque no aparece asociado a daños forestales de consideración.

Los insectos **perforadores** continúan siendo uno de los agentes más peligrosos para los alcornoques de la zona, incrementándose apreciablemente respecto a la revisión anterior observándose en la práctica totalidad de los pies evaluados, destacando entre ellos el peligroso Cerambyx welensii (C. cerdo) que se reduce respecto al año pasado, si bien está asociado a la muerte de uno de los árboles muestra. Se observan las perforaciones y pequeñas acumulaciones de serrín en la base de los troncos, así como considerables galerías en tocones de árboles ya apeados en operaciones de saneamiento del arbolado. La predilección de este cerambícido por árboles debilitados o decrépitos es ampliamente conocida, por lo que el deterioro causado por la sequía o altas temperaturas amplifica sus efectos. Este perforador, al reducir significativamente la sección resistente de ramas y troncos, deja al arbolado más susceptible a los daños por viento o tormentas, llegándose a ver algún ejemplar partido y caído en el suelo debido a la pérdida de sección resistente de ramas y tronco. Aunque estudios recientes parecen confirmar la acción en esta zona de C. welensii frente al anteriormente citado C. cerdo y dado que la separación entre ambas especies sólo es posible a escala macroscópica por las distintas conicidades de los extremos abdominales, cabe hacer constar que C. cerdo es una plaga con una situación legal complicada pues a su peligrosidad potencial une el hecho de encontrase en varios catálogos o listados de especies vulnerables o protegidas; así como a encontrarnos en una masa en aprovechamiento corchero donde se han efectuado ya varias pelas y en la que se ha efectuado el correspondiente descorche durante el verano de revisión.

Se registran también daños por otros perforadores, aunque limitados a unos cuantos casos en toda la parcela, en un nivel de afección inferior al registrado el año anterior. Aparecen así ramillas terminales muertas debidas a los anillamientos larvarios de *Coroebus florentinus* en la quinta parte de los alcornoques evaluados, junto con culebrillas de *Coroebus undatus* visibles tras el descorche, y cuyos daños son más importantes en la producción corchera que sobre el hospedante, incrementándose considerablemente al aparecer sobre casi todos los pies evaluados, al resultar mucho más visible sus galerías tras el descorche.

Por último, y dentro de lo que puede considerarse normal en los alcornocales de la zona, se observa una presencia ligera de **insectos agallícolas** en una corta fracción del arbolado en un nivel similar al de la revisión anterior, y no asociados a daños forestales de consideración. Destaca entre estos agallícolas el cecidómido *Dryomyia lischtensteini*, muy frecuente en los montes de quercíneas de la zona, y de quien se ven las típicas formaciones esféricas en el envés foliar.

Al igual que en anteriores revisiones, se advierte la presencia del hongo *Hypoxilon mediterraneum* (*Biscogniauxia mediterranea*) en algo menos de la tercera parte de los pies, reduciéndose ligeramente respecto al año precedente, asociado a la muerte de ramas y ramillas y de quien se ve el estroma negruzco asomando bajo las resquebrajaduras del corcho y cuya expansión se ve favorecida en masas aprovechadas para descorche como la que nos ocupa; recomendándose la desinfección de las herramientas entre pie y pie en su ejecución como medio para reducir su propagación. Se observan también los habituales ramillos terminales puntisecos causados por *Botryosphaeria stevensii* (*Diplodia mutila*) en algunos pies salpicados, que se incrementan respecto al año anterior.

En lo que se refiere a los daños abióticos, se advierten daños por **golpe de calor**, presentes en prácticamente todos los pies, asociados a plegamientos en las hojas a lo largo del nervio central, en una estrategia de reducción de pérdidas de agua por transpiración al disminuir la superficie de intercambio, junto con daños mecánicos en ramas por tormentas, que podrían verse amplificados en pies caracterizados por

pérdidas de la resistencia estructural debidos a la acción de perforadores o pudriciones por *Hypoxilon*, como puede verse a lo largo del camino de acceso a la parcela.

Se advierten también daños recientes por **descorche** en todos los pies evaluados, lógicos en una masa en aprovechamiento como la que nos ocupa, y que como ya se ha mencionado anteriormente puede favorecer la entrada de *Hypoxilon* en los árboles a través de las heridas causadas al tronco, acompañados de exudados negruzcos en algunos casos, presumiblemente asociados a bacteriosis. Son también relativamente frecuentes la aparición de grietas en el corcho, quizá debido a fenómenos de expansión-contracción debido a la oscilación de temperaturas.

Por último, y sin que se pueda precisar la causa con exactitud, se advierte algún **aborto** o **puntisecado** de ramillas, junto con **tumoraciones** generalizadas en los troncos, sin mayor trascendencia fitosanitaria, en un patrón ya observado en anteriores revisiones de la parcela y que podría estar relacionado con las operaciones de descorche.

El conjunto de **síntomas y signos** observados se resumen en la tabla adjunta.

TABLA 6: Distribución de síntomas y signos en la parcela: pies afectados (Npar), Extensión de los daños en clases de porcentajes en grado de 1 a 7 (Extensión), pies afectados por ha (N/ha), porcentaje de pies afectados (%), defoliación y decoloración de los pies afectados por cada agente (Defo/Deco), diferencia de las defoliaciones y decoloraciones con las medias de la parcela (DifDefo y DifDeco, marcados en rojo si el valor de los pies afectados es superior al valor medio de la parcela y en verde en caso contrario), diámetro (Diam) y altura medias (Alt) de los pies afectados por cada agente y diferencias con los valores medios de la parcela (DifDiam y DifAlt).

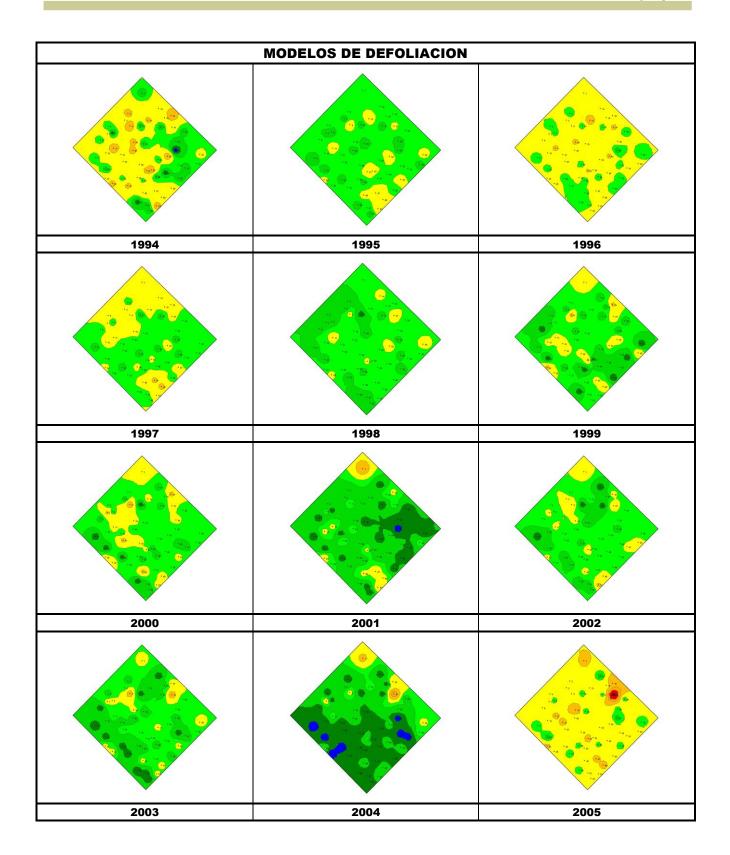
	N par	Extensión	N/ha	%	Defo	Deco	Dif Defo	Dif Deco	Diam	Alt	Dif Diam	Dif Alt
HOJAS/ACÍCULAS												
Hojas	94	1,93	376	100,00	21,49	0,02	-1,64	-0,08	45,28	9,29	0,00	0,00
Comidos/perdidos	40	1,00	160	83,33	21,75	0,03	-1,38	-0,08	46,35	9,28	1,07	-0,01
Agujeros/Parc. comidas	9	1,00	36	18,75	20,00	0,00	-3,13	-0,10	41,78	9,63	-3,50	0,34
Muescas	16	1,00	64	33,33	23,13	0,00	0,00	-0,10	58,44	9,28	13,16	-0,02
Esqueletizadas	13	1,00	52	27,08	19,62	0,00	-3,51	-0,10	36,46	9,16	-8,82	-0,13
Caída prematura	2	1,00	8	4,17	32,50	0,50	9,37	0,40	34,50	8,55	-10,78	-0,74
Microfilia	2	1,00	8	4,17	27,50	0,00	4,37	-0,10	46,00	9,75	0,72	0,46
Deformaciones	52	2,67	208	100,00	21,06	0,02	-2,07	-0,08	44,42	9,28	-0,85	-0,01
Enrolladas	47	2,85	188	97,92	21,49	0,02	-1,64	-0,08	45,28	9,29	0,00	0,00
Agallas	5	1,00	20	10,42	17,00	0,00	-6,13	-0,10	36,40	9,18	-8,88	-0,11
RAMAS/BROTES												
Brotes del año	28	1,00	112	58,33	21,61	0,04	-1,52	-0,06	40,04	9,38	-5,24	0,08
Muerto/moribundo	25	1,00	100	52,08	21,20	0,04	-1,93	-0,06	39,64	9,30	-5,64	0,01
Aborto	3	1,00	12	6,25	25,00	0,00	1,87	-0,10	43,33	9,97	-1,94	0,68
Ramillos <2 cm	25	1,00	100	52,08	24,00	0,04	0,87	-0,06	50,00	9,16	4,72	-0,13
Rotura	1	1,00	4	2,08	35,00	0,00	11,87	-0,10	35,00	9,50	-10,28	0,21
Muerto/moribundo	15	1,00	60	31,25	24,00	0,00	0,87	-0,10	39,07	9,16	-6,21	-0,13
Pudriciones	9	1,00	36	18,75	22,78	0,11	-0,35	0,01	69,89	9,12	24,61	-0,17
Ramas 2-10 cm	6	1,00	24	12,50	18,33	0,00	-4,80	-0,10	44,00	10,22	-1,28	0,93
Rotura	1	1,00	4	2,08	25,00	0,00	1,87	-0,10	64,00	9,90	18,72	0,61
Pudriciones	5	1,00	20	10,42	17,00	0,00	-6,13	-0,10	40,00	10,28	-5,28	0,99
Ramas >10 cm	1	2,00	4	2,08	20,00	0,00	-3,13	-0,10	40,00	9,50	-5,28	0,21
Deformaciones	1	2,00	4	2,08	20,00	0,00	-3,13	-0,10	40,00	9,50	-5,28	0,21
Tumores	1	2,00	4	2,08	20,00	0,00	-3,13	-0,10	40,00	9,50	-5,28	0,21
TRONCO/C.RAÍZ					,							

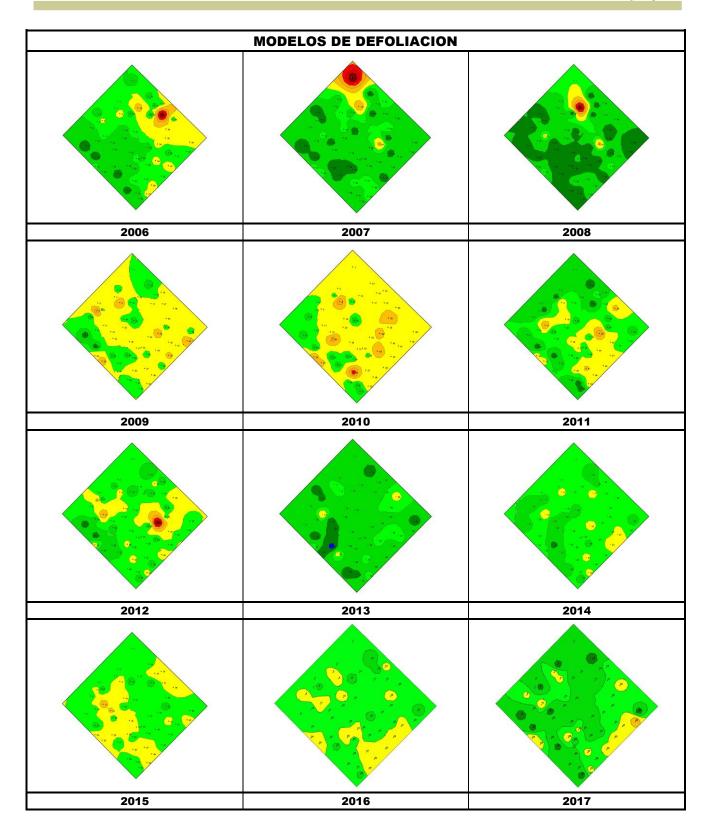
	N par	Extensión	N/ha	%	Defo	Deco	Dif Defo	Dif Deco	Diam	Alt	Dif Diam	Dif Alt
Tronco	93	4,66	372	100,00	21,45	0,02	-1,68	-0,08	45,42	9,30	0,14	0,01
Deformaciones	7	2,00	28	14,58	23,57	0,00	0,44	-0,10	38,86	8,93	-6,42	-0,36
Tumores	7	2,00	28	14,58	23,57	0,00	0,44	-0,10	38,86	8,93	-6,42	-0,36
Signos insectos	38	2,53	152	79,17	21,18	0,03	-1,95	-0,07	47,05	9,38	1,78	0,08
Perforaciones, serrín	1	1,00	4	2,08	40,00	0,00	16,87	-0,10	48,00	8,30	2,72	-0,99
68 Galerías	37	2,57	148	77,08	20,68	0,03	-2,45	-0,07	47,03	9,41	1,75	0,11
Heridas	46	6,98	184	95,83	21,09	0,02	-2,04	-0,08	45,22	9,31	-0,06	0,02
Descortezamientos	46	6,98	184	95,83	21,09	0,02	-2,04	-0,08	45,22	9,31	-0,06	0,02
Exudaciones	2	1,00	8	4,17	27,50	0,00	4,37	-0,10	42,00	8,75	-3,28	-0,54
Tronco completo	1	3,00	4	2,08	25,00	0,00	1,87	-0,10	32,00	8,70	-13,28	-0,59
Deformaciones	1	3,00	4	2,08	25,00	0,00	1,87	-0,10	32,00	8,70	-13,28	-0,59
Tumores	1	3,00	4	2,08	25,00	0,00	1,87	-0,10	32,00	8,70	-13,28	-0,59
Tronco	93	4,66	372	100,00	21,45	0,02	-1,68	-0,08	45,42	9,30	0,14	0,01
Deformaciones	7	2,00	28	14,58	23,57	0,00	0,44	-0,10	38,86	8,93	-6,42	-0,36
Tumores	7	2,00	28	14,58	23,57	0,00	0,44	-0,10	38,86	8,93	-6,42	-0,36
Signos insectos	38	2,53	152	79,17	21,18	0,03	-1,95	-0,07	47,05	9,38	1,78	0,08
Perforaciones, serrín	1	1,00	4	2,08	40,00	0,00	16,87	-0,10	48,00	8,30	2,72	-0,99

Por último, se presenta a continuación la relación entre agentes dañinos identificados y los distintos síntomas observados.

TABLA 7: Relación entre agentes, síntomas y signos observados.

	N	Defoli	adores	Perfor	adores	Form. Agallas		Tizón		Calor	
	par	n	%	n	%	n	%	n	%	n	%
HOJAS/ACÍCULAS											
Hojas	94	38	100,00			5	100,00			47	100,00
Comidos/perdidos	40	38	100,00								
Agujeros/Parc. comidas	9	9	23,68								
Muescas	16	16	42,11								
Esqueletizadas	13	13	34,21								
Caída prematura	2										
Microfilia	2										
Deformaciones	52					5	100,00			47	100,00
Enrolladas	47									47	100,00
Agallas	5					5	100,00				
RAMAS/BROTES											
Brotes del año	28							9	39,13		
Muerto/moribundo	25							9	39,13		
Aborto	3										
Ramillos <2 cm	25			10	20,83			9	39,13		
Rotura	1										
Muerto/moribundo	15			10	20,83						
Pudriciones	9							9	39,13		
Ramas 2-10 cm	6							5	21,74		
Rotura	1										
Pudriciones	5							5	21,74		


	N	Defoli	adores	Perfor	adores	Form. Agallas		Tizón		Calor	
	par	n	%	n	%	n	%	n	%	n	%
Ramas >10 cm	1										
Deformaciones	1										
Tumores	1										
TRONCO/C.RAÍZ											
Tronco	93			38	79,17						
Deformaciones	7										
Tumores	7										
Signos insectos	38			38	79,17						
Perforaciones, serrín	1			1	2,08						
68 Galerías	37			37	77,08						
Heridas	46										
Descortezamientos	46										
Exudaciones	2										
Tronco completo	1										
Deformaciones	1										
Tumores	1										


	N	Viento/	Tornado	Desco	orche	Bact	erias	Ag.desc	onocido
	par	n	%	n	%	n	%	n	%
HOJAS/ACÍCULAS									
Hojas	94							4	10,26
Comidos/perdidos	40							2	5,13
Agujeros/Parc. comidas	9								
Muescas	16								
Esqueletizadas	13								
Caída prematura	2							2	5,13
Microfilia	2							2	5,13
Deformaciones	52								
Enrolladas	47								
Agallas	5								
RAMAS/BROTES									
Brotes del año	28							19	48,72
Muerto/moribundo	25							16	41,03
Aborto	3							3	7,69
Ramillos <2 cm	25	1	100,00					5	12,82
Rotura	1	1	100,00						
Muerto/moribundo	15							5	12,82
Pudriciones	9								
Ramas 2-10 cm	6							1	2,56
Rotura	1							1	2,56
Pudriciones	5								
Ramas >10 cm	1							1	2,56
Deformaciones	1							1	2,56
Tumores	1							1	2,56
TRONCO/C.RAÍZ									
Tronco	93			46	100,00	1	100,00	8	20,51

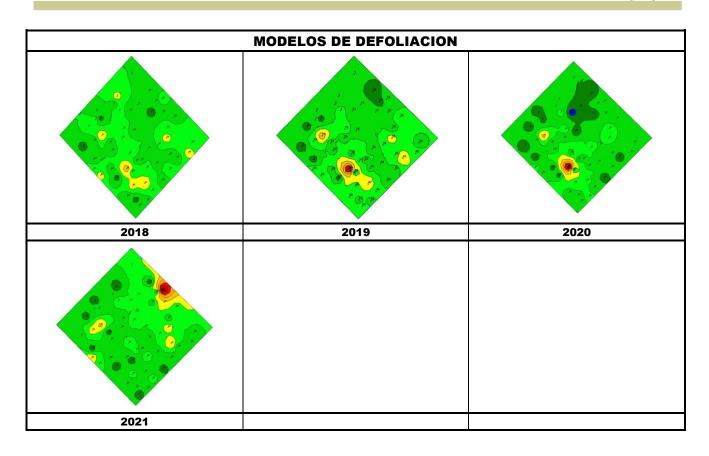

	N	Viento/	Fornado	Desco	orche	Bact	erias	Ag.desc	onocido
	par	n	%	n	%	n	%	n	%
Deformaciones	7							7	17,95
Tumores	7							7	17,95
Signos insectos	38								
Perforaciones,serrín	1								
68 Galerías	37								
Heridas	46			46	100,00				
Descortezamientos	46			46	100,00				
Exudaciones	2					1	100,00	1	2,56
Tronco completo	1							1	2,56
Deformaciones	1							1	2,56
Tumores	1							1	2,56

FIG 6: . Perforador de bellotas. Pie derribadopor tormenta y debilidad en tronco causada por *Cerambyx wellensii*. Daños por *Coroebus undatus* visibles tras el descorche. Tumoraciones en tronco.

Los dos principales parámetros para evaluar el estado de salud en masas forestales son la defoliación y decoloración

DEFOLIACION: se entiende por defoliación la pérdida de hojas/acículas que sufre un árbol en la parte de su copa evaluable, es decir, eliminando del proceso de estima la copa muerta (ramas y ramillos claramente muertos) y la parte de la copa con ramas secas por poda natural o competencia.


De acuerdo con la normativa europea, se consideran las siguientes clases de defoliación o daño:

- Arboles sin daño: defoliación 0-10%
- Ligeramente dañados: defoliación 15-25%
- Moderadamente dañados: defoliación 30-60%
- Gravemente dañados: defoliación 65-95%
- Arboles muertos: defoliación 100%

DECOLORACION: se entiende por decoloración, la aparición de coloraciones anormales en la totalidad del follaje o en una parte apreciable del mismo, utilizándose en su evaluación un criterio subjetivo que implica el conocimiento del medio forestal correspondiente por parte del evaluador.

De acuerdo con la normativa europea, se consideran las siguientes clases de decoloración:

- Clase 0: decoloración nula
- Clase 1: decoloración ligera
- Clase 2: decoloración moderada
- Clase 3: decoloración grave

4. Instrumentación.

Para el seguimiento intensivo y continuo de la parcela están instalados los siguientes equipos de medición:

TABLA 8: Equipos de medición instalados en la parcela. Periodicidad quincenal 1997-2011; Mensual desde 2012

Variable	Equipo	Parcela Interior	Parcela Exterior	Instalación	Periodicidad
	Torre meteorológica		1		
	Placa solar		1]	
	Meteodata		1		
	Anemómetro		1		
Meteorología	Veleta		1	1997	Quincenal/Mensual
	Piranómetro		1		
	Termómetro		1		
	Sonda Humedad		1		
	Pluviómetro		1		
Draginitagión	Acumuladores		4		
Precipitación incidente	Pluviómetro		1	1997	Quincenal/Mensual
incidente	Captador nieve		-		
	Acumuladores	6			
Trascolación	Pluviómetro	1		1997	Quincenal/Mensual
	Captador nieve	-			
Desfronde	Captadores desfronde	4		1999	Quincenal/Mensual
Humedad/Temp. del suelo	Sonda de humedad	16		2009-2014	Quincenal/Mensual
Inmisión	Dosímetros pasivos		12	2000	Quincenal/Mensual
Crecimiento	Dialdendro en continuo	15		1999	Quincenal/Mensual
Fenología	Árboles de seguimiento	20		1998	Quincenal/Mensual

FIG 7: Parcela exterior. Torre meteorológica. Captador de desfronde y pluviómetro. Acumulador de deposición.. Sonda de humedad. Data-logger.

Dosímetros pasivos

5. Deposición atmosférica.

La deposición atmosférica es un conjunto de procesos que conducen al depósito de materiales ajenos (a través de hidrometeoros, aerosoles o movimientos de gases) sobre la superficie descubierta del suelo o sobre la superficie exterior de árboles y plantas (troncos, ramas y hojas). La deposición depende de la concentración de contaminantes en una estación y momento determinados, lo que a su vez es función de la situación y actividad de las fuentes de emisión (grandes núcleos urbanos o industrias) así como de las condiciones atmosféricas, que determinan no sólo el movimiento de los contaminantes sino la reactividad entre los mismos.

La deposición atmosférica total consta de tres componentes:

- ✓ *Deposición seca:* depósito directo de los contaminantes sobre la superficie del suelo, el agua y la vegetación. Es el tipo de deposición más abundante en las zonas próximas a los focos de emisión.
- ✓ *Deposición húmeda:* depósito arrastrado hacia el ecosistema por la lluvia o la nieve. Previa unión de los contaminantes a las nubes o gotas de precipitación. Es el tipo de deposición más abundante en las zonas alejadas de los focos de emisión.
- ✓ **Deposición por nubes, niebla y oculta:** la vegetación intercepta directamente el agua y los contaminantes de las nubes, niebla, rocío y escarcha.

Para desarrollar un programa de seguimiento de los efectos de la contaminación atmosférica sobre la salud de los bosques, uno de los objetivos principales del programa, es necesario disponer de una estimación de la cantidad de contaminantes que entran periódicamente por unidad de superficie. Como sistema de medición más económico y eficaz se ha desarrollado el **método de trascolación**, empleado en todo el sistema ICP-Forests, que permite la estimación de las deposiciones total y seca, el cálculo de la deposición húmeda y la caracterización de los procesos de interacción entre los contaminantes que tienen lugar dentro del arbolado.

Para caracterizar la deposición se toman como vías de entrada al ecosistema:

- ✓ Precipitación en campo abierto: denominada también precipitación incidente o bulk deposition, que llega al suelo directamente desde el cielo, sin atravesar el dosel arbóreo y que se corresponde con la deposición húmeda
- ✓ *Precipitación bajo dosel arbóreo:* denominada también trascolación o *throughfall* en la que se recoge el agua que llega al suelo tras atravesar el follaje de la masa forestal, tras mojar la superficie de las copas e interaccionar con ellas, arrastrando parte de la deposición seca previamente caída, así como la precipitación húmeda.

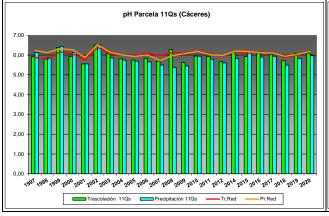
La toma de muestras se hace en una batería de colectores normalizados situados a campo abierto y bajo cubierta arbórea y se analizan en una serie de laboratorios de referencia convenientemente intercalibrados entre sí, a través de un exhaustivo sistema de control y aseguramiento de calidad, de forma que resulten intercomparables y coherentes entre sí los resultados obtenidos en los países integrantes del programa. Para el cálculo de la deposición hay que tener en cuenta tanto la cantidad de precipitación al ecosistema como la concentración de los diferentes solutos en la misma.

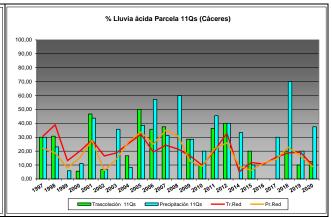
Como variables de medición de la deposición, el manual considera los siguientes parámetros:

TABLA 9: parámetros descriptores de la deposición atmosférica en los ecosistemas forestales del Programa ICP-Forests.

Variable	Descripción	Valores de referencia RTSAP (*)
pН	Medida de la acidez o basicidad. Se considera lluvia ácida con valores ≤ 5,65.	6,5-9,5
Conductividad	Índice de la presencia general de solutos en el agua.	≤2.500μS/cm
Calcio	Elementos que se encuentran en el agua de lluvia debido fundamentalmente a	n.d
Magnesio	su origen terrígeno, al formar parte de la mayoría de los suelos, especialmente	n.d
Potasio	en zonas de terreno calizo.	n.d
Sodio	Elementos de origen marino, dependiendo su presencia de la distancia a la	200 mg/l
Cloro	línea de costa. Papel tóxico en la vegetación	250 mg/l
Amonio	Procede de emisiones contaminantes a la atmósfera fundamentalmente de actividades agrícolas o ganaderas. Papel en la acidificación de los suelos.	0,50 mg/l
Nitratos	Producidos por la actividad industrial, doméstica y de transporte, ligados a procesos de combustión y responsables de la acidificación de la deposición que	50 mg/l
Sulfatos	llega a los ecosistemas forestales. Papel precursor (N) en la formación de ozono, contaminante secundario en forma de aerosol.	250 mg/l
Alcalinidad	Capacidad para neutralizar los ácidos disueltos	
Nitrógeno total	Nitrógeno total disuelto presente en la deposición	
Carbono orgánico disuelto	Carbono presente en la muestra procedente de materia orgánica	
Aluminio		0,2 mg/l
Manganeso	Metales pesados	0,05 mg/l
Hierro		0,2 mg/l

(*)RTSAP: Reglamento Técnico-Sanitario de Aguas Potables.


Se caracteriza a continuación la deposición atmosférica en la parcela 11Qs, pasando revista a la evolución de los distintos parámetros a lo largo de la series histórica estudiada, haciendo la salvedad de que se trata de años completos, a excepción de los años 1997 (mayo-diciembre); 2012 (enero-julio) y 2014 (abrildiciembre), por lo que caben ciertas anomalías.


De cada parámetro se da el comportamiento del parámetro, la diferencia existente entre trascolación (bajo cubierta arbórea) y precipitación incidente (a campo abierto), lo que da idea tanto del papel del arbolado como sumidero como de la incidencia de la deposición seca, así como la distribución por trimestres de cada deposición, con objeto de caracterizar una posible tendencia temporal en el aporte de polutentes al ecosistema.

5.1. pH.

TABLA 10: Caracterización pH. Media anual ponderada por volumen (en rojo valores anuales < 5,65), porcentaje de muestreos en los que se ha obtenido pH < 5,65 (lluvia ácida), precipitación anual y media de la Red

	T	rascolación (Tı	r)	Precip	itación inciden	te (Pi)	Media Red		
Año	Media pond	Lluvia ácida (%)	Precipit. (mm)	Media pond	Lluvia ácida (%)	Precipit. (mm)	Trasc	P.inc	
1997	5,90	30,00	715	6,13	30,00	775	5,89	6,23	
1998	5,82	30,77	676	5,88	23,08	785	5,78	6,12	
1999	6,39	0,00	526	6,43	5,88	650	6,16	6,33	
2000	5,93	5,56	820	6,14	11,11	972	6,06	6,27	
2001	5,55	46,67	819	5,55	43,75	990	5,76	5,88	
2002	6,50	6,67	877	6,51	6,67	985	6,39	6,53	
2003	6,06	0,00	942	5,85	35,71	1085	6,07	6,14	
2004	5,81	16,67	466	5,74	8,33	524	5,99	6,00	
2005	5,75	50,00	351	5,68	38,46	396	5,96	5,93	
2006	5,83	35,71	875	5,65	57,14	1006	6,08	6,01	
2007	5,69	37,50	638	5,50	31,25	721	5,98	5,72	
2008	6,28	0,00	568	5,36	60,00	677	6,12	5,97	
2009	5,62	28,57	462	5,45	28,57	520	6,10	6,07	
2010	5,95	10,00	1243	5,94	20,00	1154	6,22	6,19	
2011	5,93	36,36	787	5,79	45,45	874	6,06	6,02	
2012	5,66	40,00	124	5,60	40,00	155	5,96	5,98	
2014	6,14	0,00	577	5,82	33,33	615	6,17	6,20	
2015	5,92	20,00	431	6,18	10,00	512	6,08	6,18	
2016	6,10	0,00	840	5,90	0,00	978	6,16	6,12	
2017	6,02	0,00	364	5,93	30,00	459	6,09	6,10	
2018	5,71	20,00	829	5,49	70,00	860	5,89	5,94	
2019	6,07	10,00	433	5,82	20,00	521	5,99	6,04	
2020	6,09	12,50	835	5,96	37,50	882	6,17	6,17	
Media	5,94	19,00	661	5,84	29,84	743	6,05	6,09	

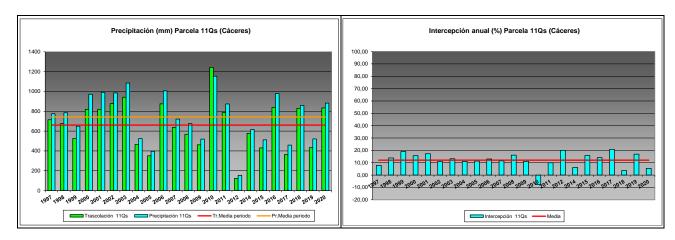


FIG 8: Variación temporal de pH, porcentaje de lluvia ácida, precipitación e intercepción (parte de precipitación retenida por follaje)

5.2. Conductividad (µS/cm).

TABLA 11: Caracterización Conductividad. Media anual ponderada por volumen, precipitación anual y media de la Red

	T	rascolación (T	r)	Precip	itación inciden	te (Pi)	Media	a Red
Año	Media pond	Deposición (kg/ha)	Precipit. (mm)	Media pond	Deposición (kg/ha)	Precipit. (mm)	Trasc	P.inc
1997	10,79	(Kg/IIa)	715	9,46	(Kg/IIa)	775	25,52	22,05
1997	15,86		676	10,35		785	29,37	22,53
1998			526			650		
	17,86			14,75			33,18	19,89
2000	19,80		820	16,36		972	35,34	22,06
2001	15,42		819	12,13		990	27,99	15,78
2002	24,98		877	18,92		985	48,98	30,11
2003	19,57		942	16,40		1085	45,96	25,07
2004	29,19		466	35,92		524	62,42	37,00
2005	25,44		351	21,64		396	65,42	30,19
2006	21,19		875	18,90		1006	61,52	28,60
2007	25,08		638	22,95		721	49,85	28,88
2008	30,36		568	24,76		677	46,65	22,88
2009	21,83		462	16,02		520	49,43	20,10
2010	14,90		1243	11,34		1154	44,44	15,09
2011	18,62		787	9,14		874	51,36	19,04
2012	19,13		124	17,08		155	53,38	20,50
2014	17,61		577	9,94		615	33,76	15,23
2015	19,39		431	11,81		512	45,28	18,25
2016	12,34		840	6,18		978	47,39	15,22
2017	23,89		364	14,65		459	56,13	18,87
2018	22,60		829	10,91		860	38,75	16,20
2019	32,73		433	19,40		521	74,16	28,49
2020	22,33		835	18,36		882	46,43	20,40
Media	20,91		661	15,97		743	46,64	22,28

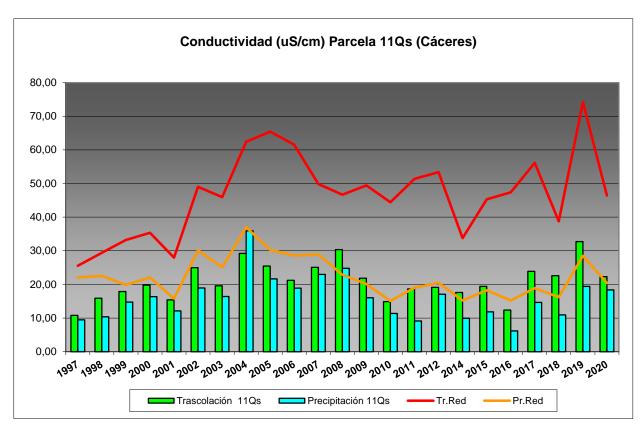


FIG 9: Variación temporal de la conductividad.

5.3. Potasio.

TABLA 12: Caracterización Potasio. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

	Tra	ascolación ('	Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd	Depos.	Precipit.	Med.pd	Depos.	Precipit.	TR-PI	Trasc	P.inc
	(mg/l)	(kg/ha)	(mm)	(mg/l)	(kg/ha)	(mm)	(kg/ha)	(kg/ha)	(kg/ha)
1997	1,00	7,15	715	0,57	4,42	775	2,74	7,33	5,18
1998	2,94	19,85	676	1,31	10,28	785	9,57	19,45	13,28
1999	2,33	12,25	526	1,32	8,56	650	3,68	17,99	11,86
2000	2,80	22,99	820	1,55	15,04	972	7,95	22,33	15,28
2001	2,12	17,36	819	1,40	13,82	990	3,55	16,00	9,92
2002	2,08	18,22	877	0,77	7,54	985	10,68	19,36	7,73
2003	1,39	13,11	942	0,31	3,34	1085	9,77	12,93	3,83
2004	2,09	9,75	466	0,80	4,21	524	5,54	16,14	4,88
2005	2,34	8,22	351	1,05	4,14	396	4,08	12,47	5,15
2006	1,83	16,02	875	0,94	9,46	1006	6,57	19,14	9,86
2007	2,44	15,57	638	1,12	8,08	721	7,49	20,44	7,92
2008	4,74	26,95	568	1,17	7,95	677	19,00	22,97	6,57
2009	2,29	10,59	462	0,64	3,32	520	7,27	18,05	4,28
2010	1,41	17,49	1243	0,26	2,95	1154	14,54	21,96	3,59
2011	1,59	12,50	787	0,43	3,77	874	8,73	18,92	5,75
2012	0,39	0,48	124	0,35	0,54	155	-0,06	2,99	0,92
2014	2,10	12,10	577	0,16	1,01	615	11,08	11,97	1,60
2015	2,85	12,30	431	0,38	1,96	512	10,34	18,33	4,20
2016	1,89	15,88	840	0,13	1,28	978	14,59	19,15	2,17

	Tra	ascolación (Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	TR-PI (kg/ha)	Trasc (kg/ha)	P.inc (kg/ha)
2017	2,94	10,71	364	0,36	1,66	459	9,05	16,19	1,94
2018	2,85	23,66	829	0,22	1,86	860	21,79	17,14	2,96
2019	2,72	11,76	433	0,39	2,05	521	9,72	17,04	3,33
2020	3,15	26,27	835	0,19	1,67	882	24,60	22,26	2,32
Media	2,27	14,83	661	0,69	5,17	743	9,66	16,98	5,85

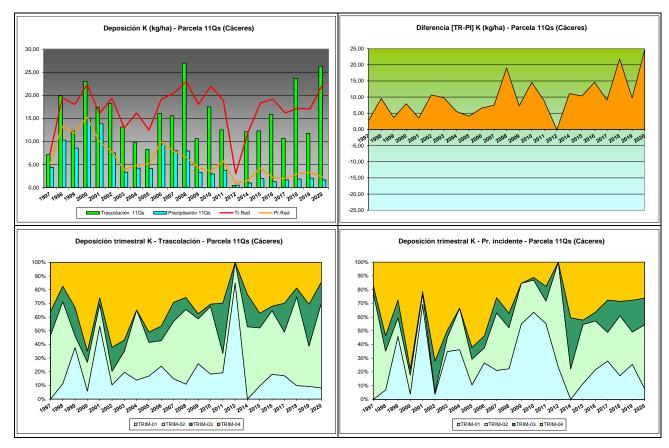


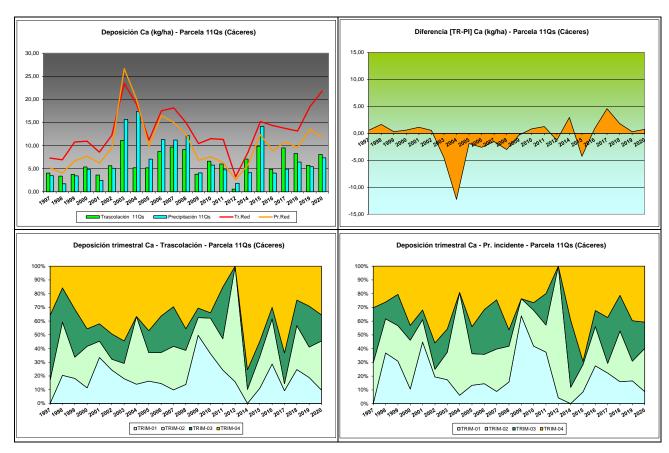
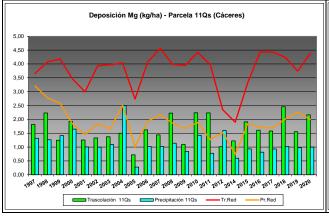
FIG 10: Variación temporal de deposición de K, diferencia TR-PI, distribución anual de la deposición por trimestres

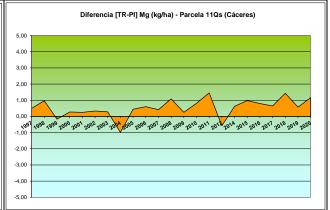
5.4. Calcio.

TABLA 13: Caracterización Calcio. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

	Tra	ascolación (Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd	Depos. (kg/ha)	Precipit. (mm)	Med.pd	Depos. (kg/ha)	Precipit. (mm)	TR-PI (kg/ha)	Trasc (kg/ha)	P.inc (kg/ha)
	(mg/l)		` /	(mg/l)	` 8 /	/	, 0	` 0 /	
1997	0,57	4,04	715	0,45	3,47	775	0,57	7,29	5,16
1998	0,50	3,38	676	0,22	1,73	785	1,66	6,91	4,05
1999	0,71	3,76	526	0,53	3,43	650	0,32	10,77	6,68
2000	0,66	5,37	820	0,49	4,77	972	0,61	10,94	7,70
2001	0,44	3,62	819	0,25	2,48	990	1,14	8,58	6,22
2002	0,64	5,63	877	0,52	5,08	985	0,56	12,23	9,40
2003	1,18	11,12	942	1,44	15,65	1085	-4,53	23,45	26,64

	Tra	ascolación ('	Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	TR-PI (kg/ha)	Trasc (kg/ha)	P.inc (kg/ha)
2004	1,11	5,19	466	3,32	17,42	524	-12,23	18,95	20,04
2005	1,47	5,17	351	1,78	7,06	396	-1,88	11,17	9,81
2006	0,99	8,69	875	1,12	11,28	1006	-2,59	17,51	16,49
2007	1,52	9,68	638	1,55	11,20	721	-1,53	18,16	14,99
2008	1,61	9,13	568	1,79	12,13	677	-3,00	14,94	12,47
2009	0,82	3,79	462	0,79	4,09	520	-0,30	10,43	6,81
2010	0,53	6,62	1243	0,50	5,78	1154	0,85	11,50	7,59
2011	0,76	6,00	787	0,54	4,74	874	1,26	11,32	6,29
2012	0,45	0,56	124	1,18	1,83	155	-1,27	3,22	2,60
2014	1,23	7,07	577	0,67	4,11	615	2,96	8,57	5,86
2015	2,29	9,86	431	2,76	14,12	512	-4,25	15,19	12,39
2016	0,58	4,87	840	0,41	4,05	978	0,82	14,34	8,83
2017	2,60	9,48	364	1,07	4,90	459	4,58	13,71	10,82
2018	1,00	8,26	829	0,75	6,43	860	1,84	13,15	9,58
2019	1,32	5,72	433	1,04	5,41	521	0,30	18,41	13,57
2020	0,97	8,08	835	0,83	7,34	882	0,75	21,83	11,67
Media	1,04	6,31	661	1,04	6,89	743	-0,58	13,16	10,25


FIG 11: Variación temporal de deposición de Ca, diferencia TR-PI, distribución anual de la deposición por trimestres

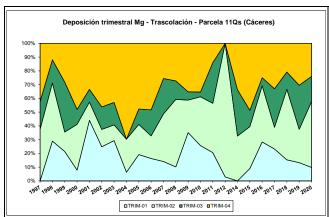

5.5. Magnesio.

TABLA 14: Caracterización Magnesio. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

	Tra	ascolación (Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd	Depos.	Precipit.	Med.pd	Depos.	Precipit.	TR-PI	Trasc	P.inc
	(mg/l)	(kg/ha)	(mm)	(mg/l)	(kg/ha)	(mm)	(kg/ha)	(kg/ha)	(kg/ha)
1997	0,25	1,82	715	0,17	1,32	775	0,50	3,66	3,20
1998	0,33	2,23	676	0,16	1,26	785	0,97	4,07	2,78
1999	0,24	1,25	526	0,22	1,41	650	-0,17	4,18	2,58
2000	0,23	1,92	820	0,17	1,65	972	0,28	3,46	1,84
2001	0,15	1,26	819	0,10	1,00	990	0,25	2,99	1,45
2002	0,15	1,33	877	0,10	1,00	985	0,34	3,93	1,83
2003	0,15	1,37	942	0,10	1,09	1085	0,28	3,97	1,65
2004	0,32	1,50	466	0,47	2,49	524	-0,99	4,03	2,51
2005	0,21	0,72	351	0,07	0,28	396	0,45	2,73	1,01
2006	0,19	1,62	875	0,10	1,02	1006	0,60	4,06	1,94
2007	0,23	1,44	638	0,14	1,02	721	0,42	4,56	2,17
2008	0,39	2,23	568	0,17	1,14	677	1,09	3,99	1,87
2009	0,24	1,09	462	0,16	0,84	520	0,25	3,95	1,67
2010	0,18	2,24	1243	0,12	1,43	1154	0,81	4,42	1,89
2011	0,28	2,23	787	0,09	0,78	874	1,46	3,98	1,27
2012	0,81	1,01	124	1,03	1,59	155	-0,58	2,35	1,52
2014	0,21	1,22	577	0,10	0,60	615	0,63	1,90	0,75
2015	0,44	1,91	431	0,18	0,93	512	0,98	3,32	1,84
2016	0,19	1,61	840	0,08	0,81	978	0,80	4,44	1,71
2017	0,43	1,58	364	0,20	0,93	459	0,65	4,43	1,69
2018	0,30	2,45	829	0,12	1,02	860	1,43	4,24	2,01
2019	0,36	1,55	433	0,19	0,98	521	0,57	3,74	2,26
2020	0,26	2,16	835	0,11	1,00	882	1,16	4,38	2,00
Media	0,28	1,64	661	0,19	1,11	743	0,53	3,77	1,89

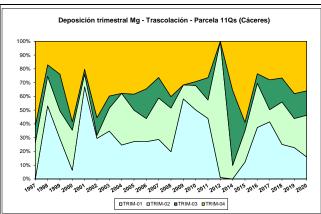


FIG 12: Variación temporal de deposición de Mg, diferencia TR-PI, distribución anual de la deposición por trimestres

5.6. Sodio.

TABLA 15: Caracterización Sodio. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolaciónprecipitación incidente y media de la Red

	Tra	ascolación (Γr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd	Depos.	Precipit.	Med.pd	Depos.	Precipit.	TR-PI	Trasc	P.inc
	(mg/l)	(kg/ha)	(mm)	(mg/l)	(kg/ha)	(mm)	(kg/ha)	(kg/ha)	(kg/ha)
1997	0,57	4,06	715	0,56	4,32	775	-0,26	6,07	6,65
1998	0,64	4,35	676	0,67	5,25	785	-0,91	11,74	10,50
1999	1,44	7,56	526	1,16	7,52	650	0,04	19,31	13,85
2000	1,34	10,97	820	1,13	10,98	972	-0,01	18,12	13,02
2001	0,94	7,72	819	0,87	8,63	990	-0,91	18,38	12,14
2002	1,54	13,52	877	1,26	12,44	985	1,08	28,50	18,75
2003	0,90	8,46	942	0,68	7,42	1085	1,04	22,49	12,86
2004	1,11	5,19	466	1,04	5,46	524	-0,27	22,85	13,75
2005	0,79	2,77	351	0,67	2,64	396	0,13	14,42	7,16
2006	1,07	9,32	875	0,97	9,78	1006	-0,46	24,17	16,07
2007	0,74	4,75	638	0,60	4,33	721	0,42	23,14	14,21
2008	0,97	5,54	568	0,82	5,56	677	-0,02	19,63	11,01
2009	1,19	5,49	462	0,96	5,00	520	0,48	22,09	12,27
2010	1,01	12,49	1243	0,95	10,97	1154	1,53	24,37	13,76
2011	1,99	15,66	787	0,30	2,66	874	13,00	20,72	5,97
2012	0,52	0,65	124	0,61	0,95	155	-0,30	4,35	2,86
2014	0,68	3,93	577	0,66	4,07	615	-0,13	6,77	4,55
2015	1,91	8,23	431	0,96	4,90	512	3,33	15,27	11,59
2016	1,10	9,25	840	0,57	5,59	978	3,66	22,84	11,19
2017	1,49	5,43	364	1,15	5,25	459	0,18	19,35	10,47
2018	1,05	8,71	829	0,74	6,37	860	2,33	22,61	14,29
2019	1,28	5,56	433	1,03	5,36	521	0,19	19,32	13,98
2020	0,64	5,33	835	0,51	4,49	882	0,84	20,09	11,74
Media	1,08	7,17	661	0,82	6,08	743	1,09	18,55	11,42

FIG 13: Variación temporal de deposición de Na, diferencia TR-PI, distribución anual de la deposición por trimestres

5.7. Amonio.

TABLA 16: Caracterización Amonio. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

	Tra	ascolación (Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	TR-PI (kg/ha)	Trasc (kg/ha)	P.inc (kg/ha)
1997	0,27	1,91	715	0,34	2,63	775	-0,72	1,81	8,19
1998	0,21	1,39	676	0,40	3,12	785	-1,74	2,24	8,36
1999	0,21	1,12	526	0,31	2,01	650	-0,89	2,71	3,66
2000	0,17	1,41	820	0,28	2,76	972	-1,35	2,48	4,26
2001	0,15	1,22	819	0,16	1,58	990	-0,36	1,86	1,82
2002	0,12	1,02	877	0,17	1,65	985	-0,63	2,43	2,91
2003	0,22	2,07	942	0,22	2,43	1085	-0,37	3,06	3,10
2004	0,95	4,41	466	0,28	1,47	524	2,93	4,12	3,23
2005	0,21	0,72	351	0,26	1,04	396	-0,31	2,41	1,80
2006	0,19	1,68	875	0,20	2,02	1006	-0,34	3,62	3,05
2007	0,24	1,52	638	0,32	2,29	721	-0,77	3,53	3,58
2008	0,21	1,18	568	0,23	1,56	677	-0,38	2,91	2,62
2009	0,18	0,83	462	0,23	1,19	520	-0,36	2,73	1,82
2010	0,10	1,27	1243	0,12	1,41	1154	-0,14	3,12	2,09
2011	0,40	3,13	787	0,31	2,69	874	0,45	4,36	3,15
2012	0,40	0,49	124	0,65	1,00	155	-0,51	2,26	2,06
2014	0,37	2,15	577	0,33	2,04	615	0,10	4,16	3,35

	Tra	ascolación (Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	TR-PI (kg/ha)	Trasc (kg/ha)	P.inc (kg/ha)
2015	0,39	1,67	431	0,62	3,16	512	-1,48	5,30	6,04
2016	0,16	1,36	840	0,23	2,24	978	-0,88	5,94	4,26
2017	0,34	1,24	364	0,12	0,55	459	0,69	2,40	1,52
2018	0,07	0,61	829	0,31	2,71	860	-2,10	2,79	2,39
2019	0,13	0,56	433	0,18	0,94	521	-0,38	1,60	1,23
2020	0,11	0,93	835	0,21	1,85	882	-0,91	1,98	1,81
Media	0,25	1,47	661	0,28	1,93	743	-0,45	3,04	3,32

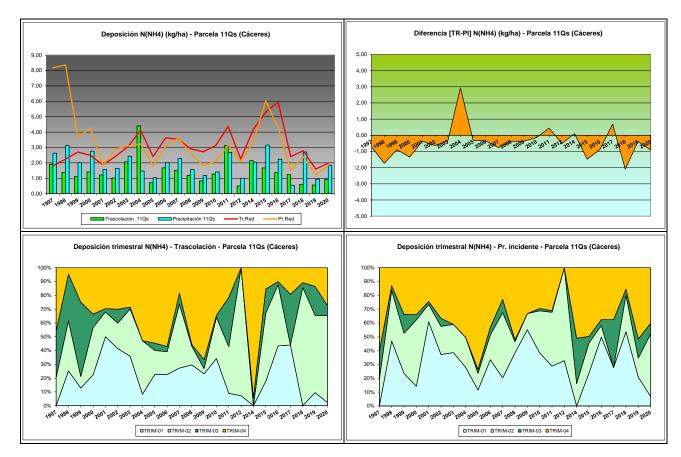


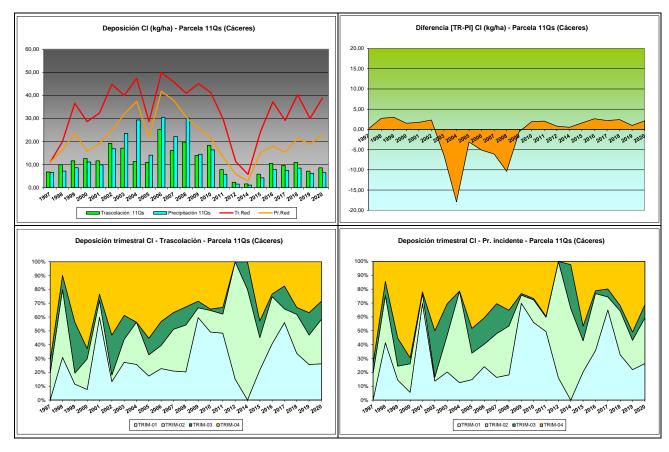
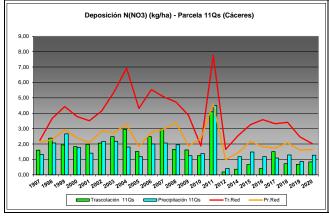
FIG 14: Variación temporal de deposición de Amonio, diferencia TR-PI, distribución anual de la deposición por trimestres

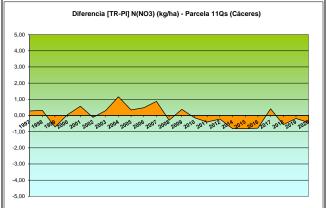
5.8. Cloro.

TABLA 17: Caracterización Cloro. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

	Tra	ascolación ('	Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd	Depos.	Precipit. (mm)	Med.pd	Depos. (kg/ha)	Precipit. (mm)	TR-PI (kg/ha)	Trasc (kg/ha)	P.inc (kg/ha)
	(mg/l)	(kg/ha)	. ,	(mg/l)	(Kg/Ha)	/	(Kg/IIa)	` U /	
1997	0,96	6,83	715	0,86	6,65	775	0,18	10,88	10,93
1998	1,47	9,94	676	0,92	7,20	785	2,74	19,88	16,27
1999	2,21	11,63	526	1,33	8,64	650	2,99	36,56	23,56
2000	1,54	12,64	820	1,14	11,12	972	1,52	28,62	15,70
2001	1,42	11,62	819	1,00	9,88	990	1,74	32,37	19,20

	Tra	ascolación (Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	TR-PI (kg/ha)	Trasc (kg/ha)	P.inc (kg/ha)
2002	2,19	19,20	877	1,71	16,88	985	2,32	44,79	24,88
2003	1,82	17,12	942	2,17	23,49	1085	-6,38	39,97	31,89
2004	2,45	11,42	466	5,60	29,34	524	-17,92	47,45	37,43
2005	3,13	10,98	351	3,56	14,09	396	-3,11	28,61	21,76
2006	2,88	25,21	875	3,01	30,32	1006	-5,11	49,90	41,76
2007	2,52	16,07	638	3,07	22,17	721	-6,10	45,78	37,79
2008	3,48	19,78	568	4,45	30,14	677	-10,36	40,90	30,60
2009	3,02	13,95	462	2,79	14,51	520	-0,55	45,08	25,80
2010	1,47	18,32	1243	1,42	16,39	1154	1,93	41,17	21,32
2011	1,00	7,86	787	0,67	5,82	874	2,04	29,44	13,12
2012	1,90	2,36	124	1,01	1,56	155	0,80	11,34	5,87
2014	0,29	1,65	577	0,18	1,13	615	0,52	5,78	2,90
2015	1,36	5,87	431	0,83	4,27	512	1,59	24,25	15,25
2016	1,25	10,53	840	0,81	7,90	978	2,63	37,19	18,03
2017	2,64	9,62	364	1,62	7,44	459	2,18	29,16	15,38
2018	1,32	10,91	829	0,99	8,49	860	2,42	40,34	21,30
2019	1,65	7,16	433	1,19	6,19	521	0,97	29,98	18,87
2020	1,03	8,61	835	0,74	6,50	882	2,11	38,79	22,86
Media	1,87	11,71	661	1,79	12,61	743	-0,91	32,97	21,41


FIG 15: Variación temporal de deposición de Cl, diferencia TR-PI, distribución anual de la deposición por trimestres

5.9. Nitratos.

TABLA 18: Caracterización Nitratos. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolaciónprecipitación incidente y media de la Red

	Tra	ascolación (Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd	Depos.	Precipit.	Med.pd	Depos.	Precipit.	TR-PI	Trasc	P.inc
	(mg/l)	(kg/ha)	(mm)	(mg/l)	(kg/ha)	(mm)	(kg/ha)	(kg/ha)	(kg/ha)
1997	0,22	1,60	715	0,17	1,32	775	0,28	2,24	2,13
1998	0,35	2,38	676	0,26	2,07	785	0,32	3,67	2,27
1999	0,37	1,94	526	0,41	2,66	650	-0,71	4,43	2,94
2000	0,22	1,83	820	0,18	1,77	972	0,05	3,79	2,38
2001	0,24	1,98	819	0,14	1,41	990	0,57	3,51	2,09
2002	0,23	2,06	877	0,22	2,18	985	-0,12	4,15	2,84
2003	0,26	2,48	942	0,20	2,18	1085	0,30	5,39	2,74
2004	0,63	2,96	466	0,34	1,80	524	1,16	6,93	3,28
2005	0,43	1,52	351	0,30	1,18	396	0,34	4,31	1,83
2006	0,28	2,48	875	0,20	2,00	1006	0,48	5,54	2,75
2007	0,46	2,94	638	0,29	2,07	721	0,87	5,06	2,96
2008	0,29	1,65	568	0,29	1,95	677	-0,30	4,72	3,38
2009	0,35	1,62	462	0,24	1,24	520	0,38	3,87	1,87
2010	0,15	1,24	1243	0,12	1,38	1154	-0,14	1,87	2,37
2011	0,52	4,09	787	0,52	4,50	874	-0,41	7,76	4,61
2012	0,15	0,19	124	0,27	0,41	155	-0,22	1,65	0,99
2014	0,06	0,36	577	0,19	1,17	615	-0,81	2,54	1,43
2015	0,15	0,66	431	0,29	1,48	512	-0,82	3,25	2,17
2016	0,05	0,40	840	0,12	1,18	978	-0,79	3,58	1,83
2017	0,41	1,50	364	0,24	1,09	459	0,41	3,32	1,74
2018	0,09	0,72	829	0,15	1,29	860	-0,57	3,41	2,08
2019	0,16	0,68	433	0,17	0,87	521	-0,19	2,46	1,61
2020	0,10	0,84	835	0,14	1,27	882	-0,44	2,02	1,64
Media	0,27	1,66	661	0,24	1,67	743	-0,02	3,89	2,34

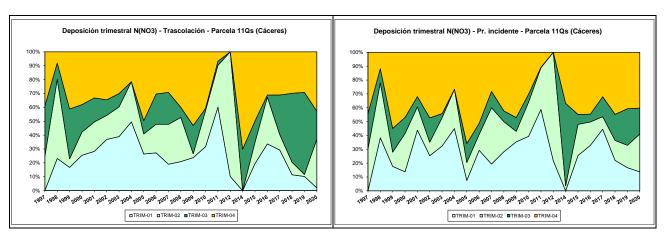


FIG 16: Variación temporal de deposición de nitratos, diferencia TR-PI, distribución anual de la deposición por trimestres

5.10. Sulfatos.

TABLA 19: Caracterización Sulfatos. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolaciónprecipitación incidente y media de la Red

	Tra	ascolación (Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd	Depos.	Precipit.	Med.pd	Depos.	Precipit.	TR-PI	Trasc	P.inc
	(mg/l)	(kg/ha)	(mm)	(mg/l)	(kg/ha)	(mm)	(kg/ha)	(kg/ha)	(kg/ha)
1997	0,34	2,44	715	0,31	2,42	775	0,02	3,00	3,70
1998	0,59	4,01	676	0,46	3,62	785	0,39	5,81	5,79
1999	0,57	2,97	526	0,66	4,31	650	-1,33	7,17	6,35
2000	0,38	3,15	820	0,34	3,27	972	-0,13	6,42	4,57
2001	0,38	3,15	819	0,34	3,39	990	-0,25	5,68	4,11
2002	0,46	4,03	877	0,45	4,48	985	-0,45	7,73	6,07
2003	0,37	3,47	942	0,32	3,47	1085	0,00	6,85	4,80
2004	0,60	2,79	466	0,54	2,81	524	-0,01	8,72	5,84
2005	0,36	1,27	351	0,35	1,38	396	-0,11	4,69	3,12
2006	0,31	2,68	875	0,28	2,86	1006	-0,18	6,80	4,69
2007	0,43	2,72	638	0,41	2,97	721	-0,25	7,24	5,12
2008	0,18	1,03	568	0,20	1,33	677	-0,31	4,49	2,61
2009	0,34	1,59	462	0,31	1,61	520	-0,03	4,67	3,32
2010	0,16	2,03	1243	0,18	2,08	1154	-0,05	4,27	2,88
2011	0,47	3,72	787	0,45	3,91	874	-0,19	5,93	4,57
2012	0,26	0,32	124	0,27	0,42	155	-0,10	1,84	1,35
2014	0,21	1,18	577	0,35	2,16	615	-0,98	2,14	2,00
2015	0,31	1,32	431	0,34	1,76	512	-0,44	3,56	2,95
2016	0,16	1,32	840	0,16	1,55	978	-0,23	4,08	2,76
2017	0,35	1,28	364	0,37	1,68	459	-0,40	4,28	2,71
2018	0,28	2,32	829	0,24	2,10	860	0,22	4,28	3,39
2019	0,24	1,06	433	0,27	1,42	521	-0,36	3,75	3,13
2020	0,22	1,85	835	0,19	1,66	882	0,19	3,59	3,24
Media	0,35	2,25	661	0,34	2,46	743	-0,22	5,09	3,87

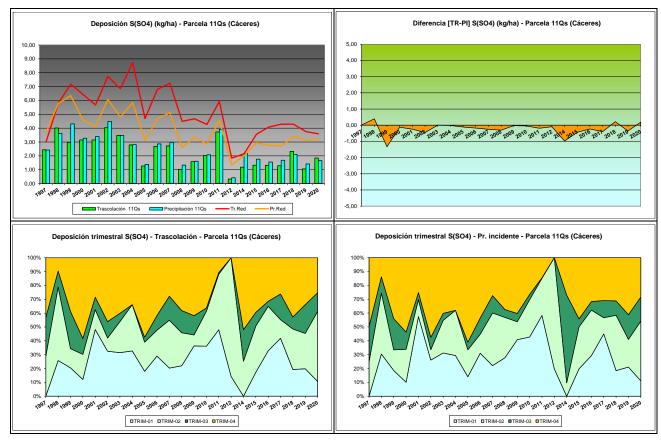


FIG 17: Variación temporal de deposición de sulfatos, diferencia TR-PI, distribución anual de la deposición por trimestres

5.11. Alcalinidad (µeq/l).

TABLA 20: Caracterización Alcalinidad. Media anual ponderada por volumen, precipitación anual y media de la Red

	T	rascolación (T	r)	Precip	itación inciden	te (Pi)	Media	a Red
Año	Media pond	Deposición (kg/ha)	Precipit. (mm)	Media pond	Deposición (kg/ha)	Precipit. (mm)	Trasc	P.inc
1997			715			775		
1998			676			785		
1999	212,61		526	247,64		650	258,14	255,59
2000	117,52		820	118,95		972	157,24	154,47
2001	58,86		819	44,38		990	76,17	54,64
2002	114,40		877	92,00		985	169,83	139,42
2003	5,70		942	3,34		1085	21,95	10,18
2004	70,94		466	53,25		524	109,89	117,44
2005	34,56		351	27,70		396	76,86	45,33
2006	36,33		875	24,32		1006	105,76	56,48
2007	31,19		638	25,51		721	59,09	37,75
2008	64,61		568	14,34		677	71,35	40,35
2009	31,48		462	11,68		520	68,62	36,01
2010	58,71		1243	39,20		1154	86,39	49,13
2011	76,83		787	45,68		874	75,33	49,79
2012			124			155	19,53	10,46
2014	118,85		577	68,50		615	136,23	120,02

	T	rascolación (T	r)	Precip	itación inciden	te (Pi)	Media	a Red
Año	Media pond	Deposición (kg/ha)	Precipit. (mm)	Media pond	Deposición (kg/ha)	Precipit. (mm)	Trasc	P.inc
2015	59,76		431	36,25		512	114,70	71,81
2016	60,08		840	72,57		978	108,18	61,70
2017	62,32		364	54,35		459	132,93	56,84
2018	76,44		829	21,70		860	94,72	48,11
2019	68,64		433	40,75		521	101,80	58,32
2020	60,51		835	28,77		882	86,06	49,71
Media	71,02		661	53,54		743	101,47	72,55

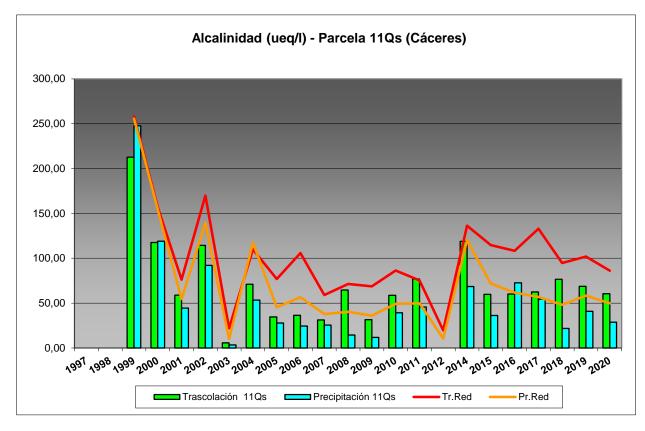


FIG 18: Variación temporal de la alcalinidad.

5.12. Nitrógeno total.

TABLA 21: Caracterización Nitrógeno total. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

	Tra	ascolación (Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd	Depos.	Precipit.	Med.pd	Depos.	Precipit.	TR-PI	Trasc	P.inc
	(mg/l)	(kg/ha)	(mm)	(mg/l)	(kg/ha)	(mm)	(kg/ha)	(kg/ha)	(kg/ha)
1997			715			775			
1998			676			785			
1999	0,58	3,06	526	0,72	4,67	650	-1,60	7,14	6,59
2000	0,40	3,24	820	0,47	4,53	972	-1,29	6,27	6,64
2001	0,39	3,19	819	0,30	2,99	990	0,21	5,37	3,91
2002	0,35	3,08	877	0,39	3,83	985	-0,75	6,58	5,75
2003	0,48	4,54	942	0,42	4,61	1085	-0,07	8,44	5,84
2004			466			524			

	Tra	ascolación (Tr)	Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	TR-PI (kg/ha)	Trasc (kg/ha)	P.inc (kg/ha)
2005	0,64	2,23	351	0,55	2,16	396	0,07	4,96	2,97
2006	0,43	3,78	875	0,39	3,90	1006	-0,12	9,06	5,73
2007	0,67	4,26	638	0,58	4,17	721	0,09	8,53	6,45
2008			568			677			
2009			462			520			
2010			1243			1154			
2011			787			874			
2012			124			155			
2014			577			615			
2015			431			512			
2016			840			978			
2017			364			459			
2018			829			860			
2019			433			521			
2020	0,35	2,90	835	0,42	3,74	882	-0,84	5,40	4,36
Media	0,48	3,37	661	0,47	3,84	743	-0,48	6,86	5,36

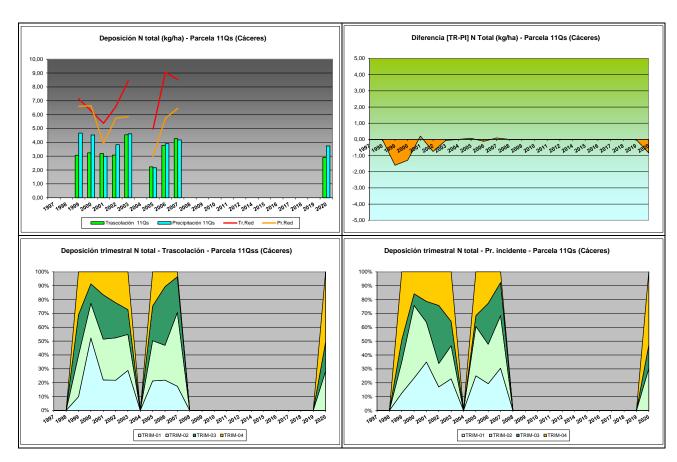


FIG 19: Variación temporal de deposición de Ntotal, diferencia TR-PI, distribución anual de la deposición por trimestres

5.13. Carbono orgánico disuelto – DOC (mg/l).

TABLA 22: Caracterización Alcalinidad. Media anual ponderada por volumen, precipitación anual y media de la Red

	T	rascolación (T	r)	Precip	itación inciden	te (Pi)	Media Red	
Año	Media pond	Deposición (kg/ha)	Precipit. (mm)	Media pond	Deposición (kg/ha)	Precipit. (mm)	Trasc	P.inc
2020	61,45		835	56,86		882	54,88	57,75
Media	61,45		835	56,86		882	54,88	57,75

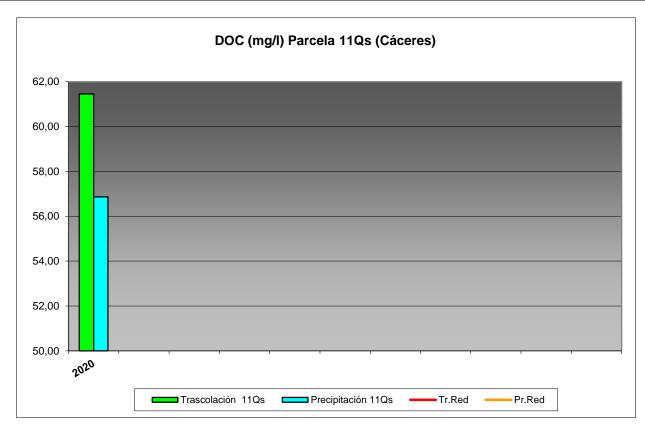


FIG 20: Variación temporal de DOC.

5.14. Aluminio.

TABLA 23: Caracterización Aluminio. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

	Trascolación (Tr)			Precipit	ación incide	ente (Pi)	Difer.	Media	a Red
Año	Med.pd	Depos.	Precipit.	Med.pd	Depos.	Precipit.	TR-PI	Trasc	P.inc
	(mg/l)	(kg/ha)	(mm)	(mg/l)	(kg/ha)	(mm)	(kg/ha)	(kg/ha)	(kg/ha)
2020	0,04	0,32	835	0,02	0,20	882	0,12	0,38	0,25
Media	0,04	0,32	835	0,02	0,20	882	0,12	0,38	0,25

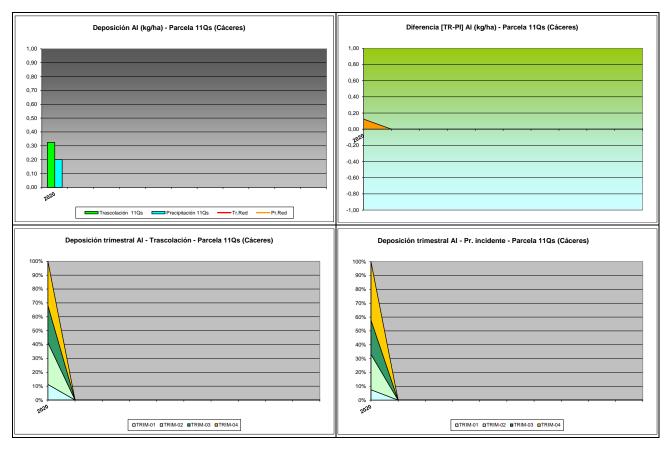


FIG 21: Variación temporal de deposición de Al, diferencia TR-PI, distribución anual de la deposición por trimestres

5.15. Manganeso.

TABLA 24: Caracterización Manganeso. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

	Trascolación (Tr)			Precipitación incidente (Pi)			Difer.	Medi	a Red
Año	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	Med.pd (mg/l)	Depos. (kg/ha)	Precipit. (mm)	TR-PI (kg/ha)	Trasc (kg/ha)	P.inc (kg/ha)
2020	0,03	0,25	835	0,01	0,04	882	0,21	0,21	0,05
Media	0,03	0,25	835	0,01	0,04	882	0,21	0,21	0,05

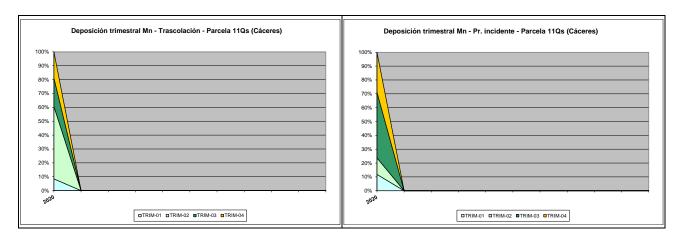


FIG 22: Variación temporal de deposición de Mn, diferencia TR-PI, distribución anual de la deposición por trimestres

5.16. Hierro.

TABLA 25: Caracterización Hierro. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

	Trascolación (Tr)			Precipit	ación incido	ente (Pi)	Difer.	Media	a Red
Año	Med.pd	Depos.	Precipit.	Med.pd	Depos.	Precipit.	TR-PI	Trasc	P.inc
	(mg/l)	(kg/ha)	(mm)	(mg/l)	(kg/ha)	(mm)	(kg/ha)	(kg/ha)	(kg/ha)
2020	0,03	0,23	835	0,01	0,06	882	0,16	0,15	0,08
Media	0,03	0,23	835	0,01	0,06	882	0,16	0,15	0,08

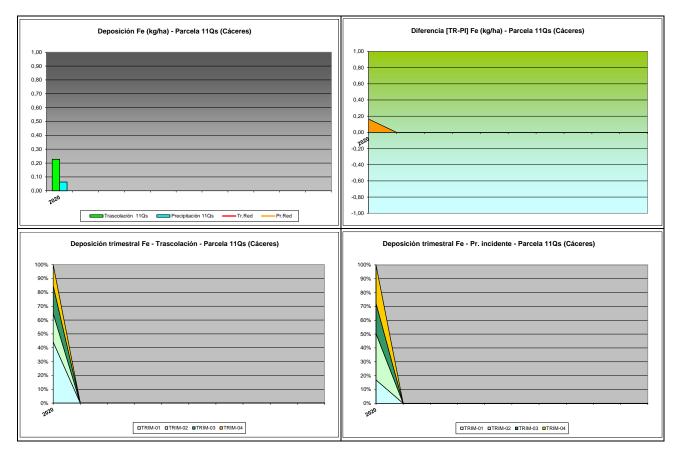


FIG 23: Variación temporal de deposición de Fe, diferencia TR-PI, distribución anual de la deposición por trimestres

5.17. Interpretación de resultados.

En cuanto a la deposición atmosférica y por lo que se refiere a la parcela 11Qs, cabe destacar:

Se observa una gran estabilidad del valor de **pH** a lo largo de los años analizados, situándose por regla general en torno a los valores de 6, generalmente un poco por debajo de los valores medios de la red y sin que se adviertan grandes diferencias en torno a los valores bajo cubierta y a cielo abierto, en lo que supone una tendencia bastante estable a lo largo de los últimos años, incrementándose ligeramente los episodios de lo que podría considerarse "lluvia ácida", que se advierten en casi el 40% de las muestras tomadas a campo abierto, y en menor medida en las habidas bajo cubierta, en la línea de lo observado a lo largo de la serie histórica de años y lejos del episodio de fuerte acidificación obtenido durante 2018. Durante la revisión del año en curso se ha obtenido un valor de la precipitación total próxima a los 900 mm, superándose el episodio de sequía del año previo, y en un año comparativamente húmedo de la estación considerada. El valor de la intercepción bajo cubierta se sitúa en el entorno del 12%.

Por lo que se refiere a la **conductividad**, se advierten valores notablemente inferiores a los medios de la red, más acusado en la trascolación, sin que por regla general se superen los 30 μ S/cm y que tras el máximo local de 2008, tienden a situarse en valores muy estables en los últimos años en torno a 10-20 μ S/cm, con una disminución a lo largo del último año, posiblemente relacionado con unas muestras más diluidas debido a una mayor precipitación y con valores generalmente superiores en trascolación, seguramente debido al efecto de la fracción seca de la deposición.

En cuanto al **potasio**, se registra un considerable incremento del aporte, que se sitúa en el entorno de los 25 kg/ha bajo cubierta y por encima de los valores medios de la red, en uno de los mayores resultados de la serie, que parece responder a un movimiento en diente de sierra durante los últimos años, mientras que las tasas a campo abierto son mucho menores y se mantienen en una tendencia mucho más estable, por debajo de los 5 kg/ha. Los valores de trascolación son siempre considerablemente superiores a los obtenidos a campo abierto lo que pondría de manifiesto el papel jugado por la deposición seca o depósito sobre las hojas y ramillas de los árboles.

El **calcio** presenta sus máximos concentrados en torno a 2003-2004, siendo más atenuada la diferencia entre las dos vías de entrada, incrementándose ligeramente los aportes durante el último año, sin llegarse a superar los 10 kg/ha. En la mayoría de los casos, el depósito de calcio resultaba mayor a campo abierto que bajo cubierta, tendencia que se invierte en el último periodo.

Por lo que respecta al **magnesio**, elemento también de aporte terrígeno, se han registrado tasas en general bajas en torno a 2 kg/ha y por debajo de los valores medios de la red, superando normalmente los valores correspondientes a la trascolación las tasas obtenidas a cielo abierto, con las solas excepciones de 2004 y 2012, advirtiéndose un ligero incremento a lo largo del último año.

El **sodio**, elemento procedente en gran parte del aporte de sal marina, presenta en general valores muy por debajo de la media de la Red, registrándose las mayores deposiciones en 2010-2011, sin demasiadas variaciones entre trascolación y precipitación a campo abierto, excepto por lo que se refiere a los valores de 2011, lo que indicaría una escasa influencia de la deposición seca para este soluto. Durante el último año se mantienen en niveles muy parecidos a los del año precedente.

El **amonio**, cuyo origen es básicamente agrícola y ganadero, no registra tampoco una gran incidencia en esta parcela sin que se suelan superar los 2 kg/ha, advirtiéndose las mayores tasas en 2004 y 2011, y que se incrementa durante el año en curso, siempre por debajo de los 2 kg/ha, a medida que aumenta la actividad ganadera en la finca, pero en niveles inferiores a los habidos durante los primeros años de evaluación. Como suele ser habitual en este contaminante, las tasas obtenidas a campo abierto son mayores que bajo cubierta.

Por lo que respecta al **cloro**, muy caracterizado también por la influencia de la sal marina, se registran también las mayores tasas en torno a 2003-2008 con una reducción a partir de ese momento y con mayor incidencia en la deposición a campo abierto que bajo cubierta. Se ha advertido también un incremento sostenido de este soluto desde el mínimo de 2012-2014, aumentando ligeramente respecto al año anterior, sin que apenas se sobrepasen los 10 kg/ha en trascolación, siempre por debajo de los valores medios de la Red y con un comportamiento muy estable a lo largo de los últimos años. Tras un primer periodo, en el que las deposiciones a campo abierto superaban a las obtenidas bajo cubierta, durante la segunda mitad de la serie este comportamiento tiende a invertirse.

Las tasas de deposición de **nitratos** son en general inferiores a la media de la Red, con los mayores valores en 2011 aunque sin llegar a superar los 5 kg/ha, y un aporte en general inferior a lo largo de los últimos años, en los que se han registrado mayores aportes a campo abierto, siempre en el entorno de 1 kg/ha y con un ligero incremento durante el último año analizado.

Se advierte un comportamiento similar en los **sulfatos**: tasas inferiores a la media de la red con un cierto repunte en 2011 y escasa diferencia entre las dos vías de entrada al sistema, que van decantándose hacia la precipitación incidente en los últimos años, manteniendo un comportamiento muy estable a lo largo del último periodo de la serie, con un ligero aumento a lo largo del último año, siempre en tasas bajas, en el entorno de 2 kg/ha.

Por lo que respecta a la **alcalinidad**, se advierten en general valores inferiores a las medias de la Red, superiores bajo cubierta arbórea, con una tendencia progresivamente descendente desde los valores más altos habidos al comienzo de la serie histórica, por encima de 150 µeq/l y una situación bastante estable durante el último bienio, en el entorno de los 50-75 µeq/l.

A lo largo del último año se retoma el análisis del **nitrógeno total**, interrumpido en 2007, y que se sitúa en el entorno de los 3-4 kg/ha, con mayores tasas a campo abierto y en todo caso inferiores a las habidas durante el inicio de la serie. Se han analizado también el **carbono orgánico disuelto** con valores similares a las medias de la red y superiores bajo cubierta, **aluminio**, **manganeso y hierro**, también con aportes mayores bajo arbolado y en tasas traza en todos los casos, sin superar 0,3 kg/ha.

Atendiendo al reparto estacional de la deposición, los mayores aportes se producen en otoño, seguido por la primavera; en lo que posiblemente intervenga también el régimen de precipitaciones de la parcela.

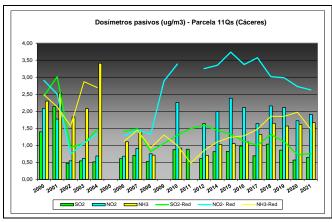
6. Calidad del aire. Inmisión.

Además del aporte de un determinado componente al ecosistema forestal, vía deposición seca/húmeda evaluada en el apartado anterior, en la Red Europea de Nivel II se mide desde 2000 la concentración en el aire de determinados contaminantes, lo que se conoce con el nombre de inmisión. Normativamente y en España se analiza la concentración de dióxido de azufre, dióxido de nitrógeno, amonio (expresados en μ g/m³) y ozono (expresado en ppb).

La medición se hace a través de dosímetros pasivos, dispositivos de muestreo dotados de un compuesto químico diana sensible a los distintos contaminantes con los que va reaccionando y que permite evaluar la concentración en aire de los mismos. En el periodo 2000-2009 el cambio de dispositivos fue quincenal, efectuándose de forma mensual a partir de 2010.

Como valores de referencia para estos parámetros, se han tomado:

TABLA 26: Valores de referencia de calidad del aire mediante dosímetros pasivos


Variable	Descripción	Valores de referencia (*)
SO ₂	Promedio anual. Nivel crítico Mapping Manual ICP-2010 (afección a líquenes)	$10 \mu g/m^3$
NO ₂	Promedio anual. Nivel crítico Mapping Manual ICP-2010	$30 \mu g/m^3$
NH ₃	Promedio Anual. Protección líquenes y briofitos	$1 \mu g/m^3$
NH3	Promedio Anual. Protección plantas superiores	$2-4 \mu g/m^3$

^(*) Seguimiento de la Calidad Ambiental y de los Daños por Contaminación en los Bosques Españoles. Proyecto LIFE 07 ENV/DE/000218 FutMon. Ministerio de Medio Ambiente y Medio Rural y Marino, Fundación CEAM, 2011.

Los principales resultados habidos en la parcela se especifican a continuación.

TABLA 27: Inmisión atmosférica. Concentraciones medias anuales de los distintos contaminantes en la parcela y media de la Red. O_3 1 ppb ~ 1,96 μ g/m³

		Parc	cela			Media	a Red	
Año	SO ₂	NO ₂	NH ₃	O ₃	SO ₂	NO ₂	NH ₃	O ₃
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	(ppb)	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	(ppb)
2000	1,40	2,08	2,30	32,97	2,45	2,91	2,49	34,34
2001	2,14	1,77	2,54	36,98	3,01	2,51	2,13	38,48
2002	0,48	0,55	1,83	31,16	0,95	0,75	1,57	32,70
2003	0,55	0,62	2,08	29,80	1,05	1,07	2,87	30,03
2004	0,52	0,69	3,41	24,37	1,47	1,34	2,69	25,36
2005								
2006	0,61	0,68	1,11	26,90	1,41	1,27	1,12	27,74
2007	0,71	0,91	1,42	25,64	1,49	1,45	1,44	27,36
2008	0,52	0,75	0,71	25,46	0,82	1,32	0,93	27,18
2009					1,06	2,89	1,30	36,30
2010	0,88	2,26	0,92	39,03	1,29	3,38	1,00	37,54
2011	0,89				1,50		0,48	
2012	0,61	1,64	0,70	33,94	1,60	3,25	0,85	38,79
2014	0,82	2,00	1,03	27,83	1,44	3,35	1,11	29,51
2015	0,83	2,38	1,05	22,14	1,32	3,73	1,24	26,27
2016	0,98	2,11	1,11	26,38	1,12	3,37	1,28	28,68
2017	0,69	1,64	1,32	29,04	1,00	3,57	1,47	30,55
2018	1,04	2,16	1,65	22,89	1,32	3,02	1,85	27,00
2019	0,86	2,11	1,57	21,34	1,11	2,98	1,85	24,94
2020	0,57	1,72	1,62	18,91	0,73	2,73	1,98	23,42
2021	0,65	1,91	1,67	21,77	0,76	2,63	1,47	25,19
Media	0,83	1,55	1,56	27,59	1,35	2,50	1,56	30,07

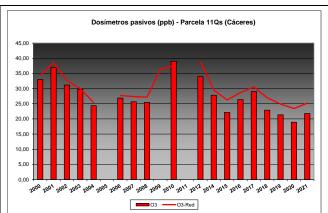


FIG 24: Variación temporal de inmisión por dosímetros

En cuanto a los registros obtenidos en los dosímetros, se advierte un patrón ya observado en otras parcelas: influencia grande de los compuestos nitrogenados, de los que destaca el amoniaco a lo largo de la primera mitad de la serie para ser sustituido por los óxidos de nitrógeno en la fase final, manteniéndose generalmente por debajo de los valores medios de la red, y una ligera reducción de los niveles de ozono tras el incremento observado desde 2015. Como en otras parcelas, y salvo por lo que se refiere a la protección de líquenes, no se han superado los umbrales de referencia descritos. Durante la última revisión se advierte un ligero incremento en las tasas de los cuatro contaminantes considerados.

7. Análisis foliar.

El objetivo del análisis foliar es, en concordancia con las especificaciones de las redes europeas, estimar el estado nutricional del arbolado y el impacto de los contaminantes atmosféricos en los ecosistemas forestales; así como la detección de tendencias temporales y sus patrones geográficos de distribución y con ello contribuir al conocimiento y cuantificación del estado de los bosques en Europa.

7.1. Análisis Macronutrientes.

Los macronutrientes analizados han registrado los siguientes valores:

TABLA 28: Análisis foliares por campaña bianual de muestreo para la parcela y comparación con el resto de las 54 parcelas de la Red de Nivel II pobladas con la misma especie y la media de la especie. A partir de 2009-2010 sólo se miden las 14 parcelas instrumentadas.

			Peso seco	N	MACRO!	NUTRIE	NTES (1	mg/g MS)	C
Año	Parcela	Provincia	(g) 100 hojas	N	S	P	Ca	Mg	K	(%)
	04 Qs	Gerona	9,00	23,09	1,61	1,51	4,80	1,58	7,13	
1995-1996	11 Qs	Cáceres	9,00	15,17	1,08	1,25	4,93	2,55	7,59	
	17 Qs	Cádiz	8,00	16,87	1,35	0,74	6,62	1,74	8,01	
	Q. suber	Red	8,67	18,38	1,35	1,17	5,45	1,96	7,58	
	04 Qs	Gerona	8,00	13,52	1,09	1,45	9,54	1,63	6,05	
1997-1998	11 Qs	Cáceres								
1997-1998	17 Qs	Cádiz	12,00	13,98	1,01	0,69	7,83	1,62	6,01	
	Q. suber	Red	10,00	13,75	1,05	1,07	8,68	1,62	6,03	
1999-2000	04 Qs	Gerona	8,00	17,14	1,25	1,48	5,50	1,62	7,10	
	11 Qs	Cáceres	7,00	12,03	1,07	1,46	7,09	2,03	4,44	
	17 Qs	Cádiz	10,00	16,08	1,18	0,87	4,93	1,76	6,52	

			Peso seco	N	IACRO	NUTRIE	ENTES (1	mg/g MS)	C
Año	Parcela	Provincia	(g) 100 hojas	N	S	P	Ca	Mg	K	(%)
	Q. suber	Red	8,33	15,08	1,17	1,27	5,84	1,80	6,02	
	04 Qs	Gerona	7,00	17,42	1,28	1,31	4,87	1,52	6,54	
2001-2002	11 Qs	Cáceres	8,00	12,91	0,99	1,45	5,28	2,02	5,13	
2001-2002	17 Qs	Cádiz	9,00	16,73	1,32	0,95	5,09	1,78	5,34	
	Q. suber	Red	8,00	15,69	1,20	1,24	5,08	1,77	5,67	
	04 Qs	Gerona	10,00	19,43	1,39	1,47	4,45	1,65	6,46	
2003-2004	11 Qs	Cáceres	9,00	13,70	1,07	1,75	6,07	2,61	5,18	
2003-2004	17 Qs	Cádiz	9,00	16,53	1,24	0,91	4,85	1,62	5,35	
	Q. suber	Red	9,33	16,55	1,23	1,38	5,12	1,96	5,66	
	04 Qs	Gerona	9,50	17,63	1,37	1,18	5,83	1,15	6,08	
2005 2006	11 Qs	Cáceres	10,00	12,94	1,33	1,41	5,71	2,02	5,12	
2005-2006	17 Qs	Cádiz	13,00	15,05	1,27	0,81	4,29	1,58	5,95	
	Q. suber	Red	10,40	15,24	1,33	1,19	5,47	1,58	5,67	
	04 Qs	Gerona	11,00	17,49	1,24	0,86	4,69	1,21	4,63	
2007-2008	11 Qs	Cáceres	10,00	12,95	1,18	1,10	4,37	1,98	4,40	
2007-2008	17 Qs	Cádiz	12,00	16,58	1,31	0,87	5,06	1,60	6,22	
	Q. suber	Red	11,00	15,67	1,24	0,94	4,71	1,60	5,08	
2009-2010	11 Qs	Cáceres	10,50	12,48	1,28	1,50	6,40	2,06	4,36	
2009-2010	Q.suber	Red	10,50	12,48	1,28	1,50	6,40	2,06	4,36	
2011 2012	11 Qs	Cáceres	9,50	12,86	1,19	1,45	5,86	2,12	5,00	
2011-2012	Q.suber	Red	9,50	12,86	1,19	1,45	5,86	2,12	5,00	
2012 2014	11 Qs	Cáceres	9,32	16,39	1,03	1,73	6,86	2,35	5,93	52,40
2013-2014	Q.suber	Red	9,32	16,39	1,03	1,73	6,86	2,35	5,93	52,40
2015 2016	11 Qs	Cáceres	12,10	17,17	1,11	1,64	5,96	2,13	5,37	50,96
2015-2016	Q.suber	Red	12,10	17,17	1,11	1,64	5,96	2,13	5,37	50,96
2015 2010	11 Qs	Cáceres	15,30	11,82	0,87	1,41	6,81	1,82	4,88	50,23
2017-2018	Q.suber	Red	15,30	11,82	0,87	1,41	6,81	1,82	4,88	50,23
2010 2020	11 Qs	Cáceres	10,89	13,00	0,95	1,44	6,79	2,29	5,28	51,99
2019-2020	Q.suber	Red	10,89	13,00	0,95	1,44	6,79	2,29	5,28	51,99

En rojo, análisis de azufre que superan el valor de referencia para la especie, 0,922 mg/g, lo que indica incidencia de la contaminación atmosférica por lluvia ácida. Fuente: (2001) Peña Martínez, J.M. El Estudio del Impacto de la Contaminación Atmosférica en los Bosques. Ministerio de Medio Ambiente. Dirección General de Conservación de la Naturaleza. Serie técnica.

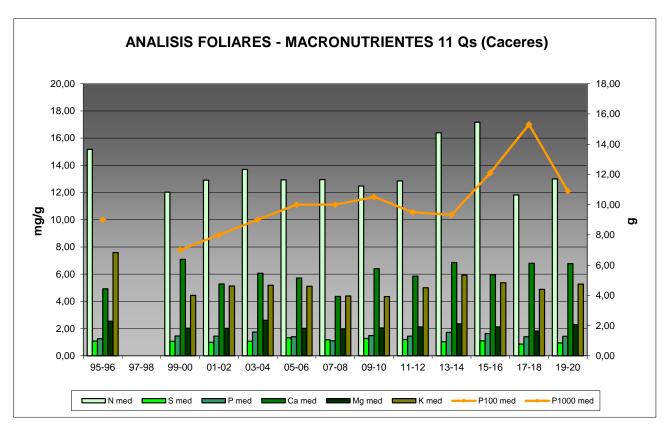


FIG 25: Evolución de macronutrientes (mg/g eje izquierdo) y peso de acículas (g eje derecho) en la parcela a lo largo de las sucesivas campañas.

7.2. Análisis Micronutrientes.

TABLA 29: Análisis foliares por campaña bianual de muestreo para la parcela y comparación con el resto de las 54 parcelas de la Red de Nivel II pobladas con la misma especie y la media de la especie. A partir de 2009-2010 sólo se miden las 14 parcelas instrumentadas.

				MICRONI	UTRIENTES (μ	g/g MS)	
Año	Parcela	Provincia	Na	Zn	Mn	Fe	Cu
	04 Qs	Gerona		47,00	2464,00	550,00	
1995-1996	11 Qs	Cáceres		26,00	1264,00	318,00	
1995-1990	17 Qs	Cádiz		25,00	2838,00	621,00	
	Q. suber	Red		32,67	2188,67	496,33	
	04 Qs	Gerona	2978,00	26,00	1699,00	181,00	
1997-1998	11 Qs	Cáceres					
1997-1998	17 Qs	Cádiz	2559,50	19,00	2118,00	141,00	
	Q. suber	Red	2768,75	22,50	1908,50	161,00	
2013-2014	11 Qs	Cáceres		13,69	1069,42	73,25	3,75
2015-2014	Q.suber	Red		13,69	1069,42	73,25	3,75
2015 2016	11 Qs	Cáceres		18,92	765,57	110,50	5,16
2015-2016	Q.suber	Red		18,92	765,57	110,50	5,16
2017 2019	11 Qs	Cáceres		16,14	1099,57	106,49	3,30
2017-2018	Q.suber	Red		16,14	1099,57	106,49	3,30
2010 2020	11 Qs	Cáceres		16,07	1073,34	77,58	4,17
2019-2020	Q.suber	Red		16,07	1073,34	77,58	4,17

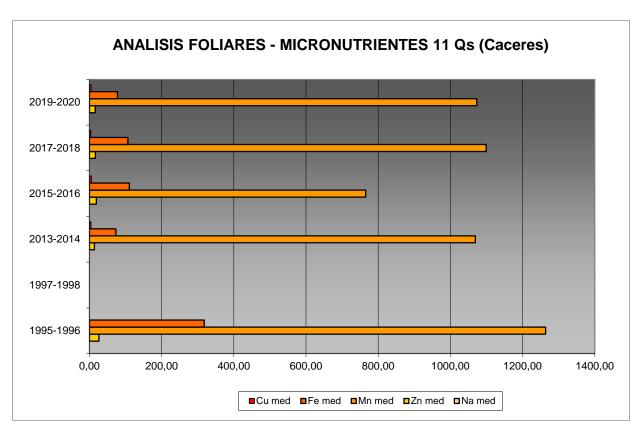


FIG 26: Evolución de micronutrientes (μg/g) en la parcela a lo largo de las sucesivas campañas

7.3. Interpretación de resultados.

Por lo que respecta a los análisis foliares efectuados en la parcela, cabe concluir:

En primer lugar hay que tener en cuenta que en la parcela 11Qs no se realizó el análisis foliar en 1997-1998.

A la vista de los resultados obtenidos en los análisis de la muestra foliar de la parcela 11Qs podemos hacer las siguientes observaciones tanto de la parcela tratada individualmente como respecto a la media interanual del resto de parcelas con el alcornoque como especie dominante:

El **peso** medio de la muestra analizada se reduce tras el máximo obtenido en la revisión anterior hasta cerca de los 11 g/100 hojas, posiblemente debido a una reducción de las precipitaciones durante el año de toma de muestras, asociado a una reducción de la capacidad de producción de biomasa, situándose más próximo al comportamiento de la serie histórica.

Respecto a los *macronutrientes*; se observa en general un incremento ligero de los niveles observados en todos los elementos. Por lo que se refiere al **nitrógeno**, el elemento más abundante en el follaje, se incrementa tras el mínimo de la serie alcanzado durante la campaña precedente, en torno a los valores de 13 mg/, próximo a los valores medios de la parcela. El **fósforo**, elemento más limitante al ser el más escaso, se en niveles similares a los de años anteriores. El **azufre** se incrementa también ligeramente siempre en el entorno de los valores más bajos de la serie y sobrepasando por muy poco el valor patrón para

la especie, que indicaría un cierto grado de contaminación por compuestos sulforosos. Como se ha mencionado anteriormente, el **calcio, magnesio y potasio** se incrementan levemente respecto a la revisión anterior, manteniendo en general valores bastante estables. En cuanto al contenido de **carbono** en el follaje, medido por primera vez en 2013-2014, se incrementa ligeramente este año, siempre en valores próximos al 50%.

Los *micronutrientes* sólo se han analizado en los muestreos de 1995-1996, 1997-1998 y 2013-2014 y no siempre se han evaluado todos ellos: sodio sólo se ha medido en 1997-1998, cobre sólo en el muestreo de 2013-2014 y zinc, manganeso y hierro en las 3 mediciones. Esta situación conlleva que no se pueda abordar la valoración de la evolución temporal de todos los micronutrientes en hojas. Lo que si podemos confirmar es una ligera reducción del **zinc, manganeso y cobre**, y una ligera disminución de **hierro.**

8. Desfronde.

Con periodicidad mensual se ha recogido el desfronde o litterfall en la parcela mediante captadores normalizados que recogen la caída correspondiente a 1 m² de superficie. La muestra así tomada se divide en sus principales componentes (hojas, ramillas de diámetro inferior a 2 cm y otras, que incluyen frutos, líquenes, musgos,...) y se analiza en el laboratorio.

Se presentan a continuación los resultados obtenidos desde 2010; haciéndose la salvedad al igual que en casos anteriores, de que en 2012 se ha muestreado el periodo enero-julio, mientras que en 2014 los análisis corresponden al periodo mayo-diciembre.

8.1. Análisis Macronutrientes.

TABLA 30: Resultados medios del análisis de desfronde en sus distintas fracciones. Aporte anual en kg/ha; porcentaje de carbono y contenido en mg/g de materia seca de nitrógeno, azufre, fósforo, calcio, magnesio y potasio.

Año	Fracción	Peso (kg/ha)	C (%)	N (mg/g)	S (mg/g)	P (mg/g)	Ca (mg/g)	Mg (mg/g)	K (mg/g)
	Hojas	2.590	52,71	6,31	(mg/g) 0,82	(mg/g) 1,08	(mg/g) 9,14	(mg/g) 1,85	(mg/g) 4,21
2005	Ramillas	620	51,93	5,29	0,56	0,78	13,25	1,48	4,05
2000	Otras	640	49,63	16,96	1,27	1,49	6,04	1,64	7,34
	Hojas	2.063	51,19	6,25	0,71	0,71	8,26	1,79	4,19
2006	Ramillas	382	51,06	5,81	0,57	0,68	13,55	1,56	3,60
	Otras	728	48,77	16,96	1,35	1,74	8,82	2,00	9,51
	Hojas	2.710	52,67	6,08	0,87	1,76	6,69	3,28	4,00
2007	Ramillas	645	52,20	5,62	0,73	1,39	10,49	3,78	4,63
	Otras	470	50,27	16,60	1,28	3,82	6,15	3,31	5,12
	Hojas	2.890	53,04	5,90	0,86	0,91	8,03	1,93	4,24
2008	Ramillas	600	51,84	5,82	0,90	0,94	13,72	1,45	5,38
	Otras	1.000	49,89	16,96	1,15	1,20	7,12	1,63	5,73
	Hojas	1.690	52,56	5,71	1,05	0,98	8,02	1,90	5,19
2009	Ramillas	411	52,30	5,12	0,82	0,91	11,30	1,33	6,09
	Otras	627	50,70	15,09	1,27	1,30	12,24	1,40	5,74
	Hojas	2.420	53,76	8,09	0,81	0,70	6,22	1,55	3,43
2010	Ramillas	374	53,21	6,08	0,56	0,70	11,67	1,26	3,84
	Otras	590	50,90	19,01	1,49	1,39	6,29	1,86	10,16
	Hojas	2.228	52,64	6,49	0,86	1,69	5,74	3,41	3,66
2011	Ramillas	398	52,06	5,60	0,69	1,36	10,27	3,66	4,28
	Otras	588	50,05	16,97	1,30	2,48	6,69	3,07	6,19

۸ ~	E ''	Peso	C	N	S	P	Ca	Mg	K
Año	Fracción	(kg/ha)	(%)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)
	Hojas	1.706	52,83	7,23	0,95	1,14	6,87	2,34	3,95
2012	Ramillas	240	52,49	5,81	0,67	0,93	11,06	2,05	4,46
	Otras	467	50,91	17,38	1,34	1,68	9,05	2,11	8,41
	Hojas	1.746	51,58	5,60	0,68	0,91	9,52	1,88	3,13
2014	Ramillas	342							
	Otras	423							
	Hojas	3.098	51,02	8,14	0,65	1,00	9,92	1,74	3,90
2015	Ramillas	506							
	Otras	606	47,54	14,76	1,15	1,44	5,53	1,76	12,66
	Hojas	2.737	51,60	7,58	0,78	0,92	9,04	1,82	3,67
2016	Ramillas	438							
	Otras	1.466	48,79	13,39	0,88	0,33	16,92	1,02	1,18
	Hojas	2.651	50,57	5,90	0,49	1,13	8,58	1,90	5,08
2017	Ramillas	538							
	Otras	532							
	Hojas	2.349	50,75	5,24	0,77	0,92	9,38	1,95	3,83
2018	Ramillas	260							
	Otras	416							
	Hojas	2.221	51,32	4,49	0,74	0,95	8,27	1,74	4,08
2019	Ramillas	436							
	Otras	665							
	Hojas	3.313			0,63	0,46	8,54	1,72	4,37
2020	Ramillas	525							
	Otras	1.576							
	Hojas	2.427	52,02	6,36	0,78	1,02	8,15	2,05	4,06
Media	Ramillas	448	52,13	5,65	0,69	0,96	11,91	2,07	4,54
	Otras	720	49,74	16,41	1,25	1,69	8,48	1,98	7,20

8.2. Análisis Micronutrientes.

TABLA 30b: Resultados medios del análisis de desfronde en sus distintas fracciones. Contenido en μ g/g de materia seca de zinc, manganeso, hierro, cobre, plomo, cobalto, niquel y cadmio (ng/g)

Año	Fracción	Zn (μg/g)	Mn (μg/g)	Fe (µg/g)	Cu (µg/g)	Pb (μg/g)	Co (µg/g)	Ni (μg/g)	Cd (ng/g)
	Hojas	14,81	981,65	124,32	2,74				
2014	Ramillas								
	Otras								
	Hojas	14,16	1200,34	140,13	3,28				
2015	Ramillas								
	Otras	27,79	346,04	319,98	8,79				
	Hojas	10,03	900,92	151,83	3,44				
2016	Ramillas								
	Otras	24,79	13,90	749,78	4,84				
	Hojas	13,29	1004,17	126,64	2,70				
2017	Ramillas								
	Otras								
2019	Hojas	22,54	1199,58	143,83	7,24				
2018	Ramillas								

Año	Fracción	Zn (µg/g)	Mn (μg/g)	Fe (μg/g)	Cu (µg/g)	Pb (μg/g)	Co (µg/g)	Ni (μg/g)	Cd (ng/g)
	Otras								
	Hojas	14,32	970,85	100,34	2,70				
2019	Ramillas								
	Otras								
	Hojas	14,22	957,80	124,63	3,19	0,58	0,19	2,51	20,75
2020	Ramillas								
	Otras								
	Hojas	14,77	1030,76	130,25	3,61	0,58	0,19	2,51	20,75
Media	Ramillas								
	Otras	26,29	179,97	534,88	6,82				

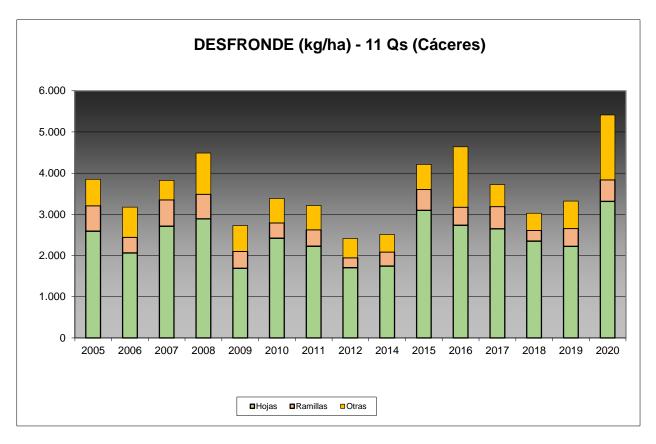


FIG 27: Fracciones de desfronde o litterfall. Serie histórica

Puede verse, con carácter general, cómo el desfronde foliar se sitúa en torno a los 3.500-4.000 kg/ha; con un considerable incremento durante el último año, tanto de la fracción foliar como la correspondiente a frutos, líquenes y otros elementos y que se sitúa por encima de los 5.000 kg/ha. La aportación de las ramillas es menor, siempre teniendo en cuenta que hace referencia a las ramillas con diámetro inferior a 2 cm si bien se incrementa con respecto a recogidas anteriores, quizá debido a los habituales fenómenos de dieback o muerte de ramillas en montes de quercíneas mediterráneas; y que los contenidos en carbono de estos aportes superan el 50% del desfronde total, lo que puede suponer una importante contribución a la fijación de CO₂ atmosférico.

9. Fenología.

La fenología estudia la relación entre los fenómenos climáticos y las características morfológicas del desarrollo anual de los vegetales. Tras las observaciones de series anuales suficientemente representativas, puede obtenerse una valiosa información sobre la respuesta de la vegetación frente a variaciones climáticas, acrecentar el papel de las especies forestales como bioindicadoras y explicar el estado actual de la vegetación. El conocimiento de las fases fenológicas del arbolado es también una importante herramienta de gestión fitosanitaria de las masas forestales, pues el ciclo biológico y la capacidad de daño de buena parte de las plagas forestales van ligadas al desarrollo de una determinada fase, particularmente en el caso de los insectos defoliadores. Los cambios fenológicos en la vegetación juegan además un importante papel en la modelación del paisaje.

La evaluación fenológica se hace sobre 20 árboles de la parcela, seleccionando de entre aquellos de las clases dominante o codominante y preferentemente con buena visibilidad de copa; siempre desde una posición fija para evitar sesgos de observación; quincenalmente desde 1999 hasta 2010 y de forma mensual a partir de entonces.

La evaluación de las distintas fases fenológicas ha experimentado sucesivos cambios metodológicos a lo largo de la serie histórica de estudio, resultando de entre ellas, las más significativas y coherentes la aparición de hoja y la floración; siempre haciendo la salvedad de que se ha considerado que una fase comenzaba cuando lo hacía el 50% de la población muestra.

Se presentan a continuación y para las fases mencionadas, los valores históricos obtenidos en la parcela 11Qs, de entre ellos el comienzo y fin de fase; su duración o amplitud; el número de días transcurrido entre el 1 de enero y la fecha de inicio de la fase, y –como esbozo de la influencia de la temperatura en el fenómeno- los días-grado transcurridos desde el 1 de enero (periodo de parada vegetativa) y el comienzo de la fase, obtenido de la estación meteorológica instalada en la parcela.

TABLA 31: Resultados de la evaluación fenológica. Comienzo, final y amplitud de la fase. Días desde el 1 de enero hasta el comienzo de fase.

Temperatura acumulada (grados-día) hasta el inicio de fase.

	Apar	ición Hoja/A	Acícula ≥ :	50% Poblac	ción		Floración	≥ 50% Pc	blación	
Año	Fecha Inicio	Fecha Final	Durac.	Días desde 01/01	Temp. Acum. (°Cdía)	Fecha Inicio	Fecha Final	Durac.	Días desde 01/01	Temp. Acum. (°Cdía)
1999	02/06/99	04/08/99	63	152	1755	16/06/99	07/07/99	21	166	2057
2000	02/05/00	13/06/00	42	122	1377					
2001	03/05/01	11/06/01	39	122	1341					
2002	29/04/02	10/06/02	42	118	1190					
2003	13/04/03	02/06/03	50	102	1141					
2004	26/04/04	24/06/04	59	116	1110					
2005	30/05/05	27/06/05	28	149	1815	09/05/05	30/05/05	21	128	1421
2006	01/05/06	15/05/06	14	120	1379	15/05/06	30/06/06	46	134	1386
2007	28/05/07	09/07/07	42	147	1642					
2008	19/05/08	16/07/08	58	139	1858	19/05/08	02/06/08	14	139	1858
2009	22/06/09	03/08/09	42	172	2494	19/05/09	08/06/09	20	138	1726
2010	10/05/10	24/05/10	14	129	1278	10/05/10	24/05/10	14	129	1278
2011	25/04/11	23/05/11	28	114	1219	25/04/11	23/05/11	28	114	1219
2012	24/04/12	28/05/12	34	114		28/05/12	25/06/12	28	148	
2014	21/04/14	23/06/14	63	110	1127	21/04/14	26/05/14	35	110	1127
2015	25/05/15	22/06/15	28	144	1682	27/04/15	25/05/15	28	116	1166
2016	25/04/16	06/06/16	42	115	1081	06/06/16	04/07/16	28	157	1750
2017	24/04/17	27/06/17	64	113	1181	29/05/17	27/06/17	29	148	1799

	Apar	ición Hoja/A	Acícula ≥	50% Poblac	ción	Floración ≥ 50% Población				
Año	Fecha Inicio	Fecha Final	Durac.	Días desde 01/01	Temp. Acum. (°Cdía)	Fecha Inicio	Fecha Final	Durac.	Días desde 01/01	Temp. Acum. (°Cdía)
2018	28/05/18	02/07/18	35	147	1527	28/05/18	31/07/18	64	147	1527
2019	03/06/19	01/07/19	28	153	1884	03/06/19	01/07/19	28	153	1884
2020	21/04/20	26/05/20	35	111	1137	21/04/20	26/05/20	35	111	1137
2021	29/04/21	28/06/21	60	118	1220	29/04/21	24/05/21	25	118	1220
Media			41	129	1449			29	135	1504

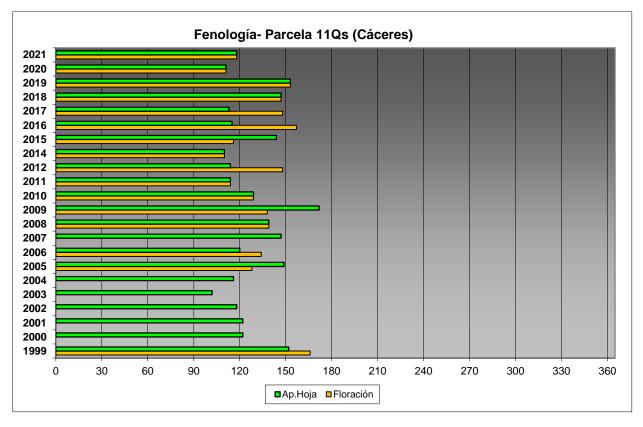


FIG 28: Fases fenológicas. Días desde 1 de enero hasta comienzo de fase

Como puede verse en los gráficos anteriores, la floración suele producirse en los meses de abril o mayo, mientras que por regla general la nueva hoja se encuentra formada en abril. En la presente revisión se advierte un adelantamiento en ambas fases hasta finales de abril.

FIG. 29: Brotación. Amentos y floración.

10. Cintas diamétricas.

Como se ha indicado anteriormente, las parcelas van dotadas de dendrómetros en continuo, 5 instalados en 1999 ampliados a 15 en 2010, de los que se ha tomado la medida de forma quincenal hasta 2009 y mensualmente a partir de 2010.

Para cada una de las cintas instaladas y año de observación se ha obtenido el crecimiento medio, mediante diferencia entre los valores máximos y mínimos anuales —expresado en datos absolutos y en porcentaje sobre el diámetro mínimo- junto con la oscilación o diferencia entre el diámetro en enero y diciembre de cada año, en idénticos términos que el parámetro anterior; y que no tiene necesariamente que coincidir, debido a movimientos de expansión y contracción del tronco ligados al flujo o parón de la savia.

TABLA 32: Valor medio dendrómetros. Crecimiento medio: diferencia en cm y porcentaje entre el máximo y mínimo del año. Oscilación media: diferencia y porcentaje entre los valores de enero y diciembre (o comienzo/fin de año en años incompletos)

AÑO	Crecimiento medio (cm)	Crecimiento medio (%)	Oscilación media (cm)	Oscilación media (%)
1999	0,01	0,03	0,01	0,03
2000	0,11	0,34	0,11	0,34
2001	0,05	0,16	0,05	0,16
2002				
2003				
2004	0,21	0,52	0,21	-0,15
2005	0,34	0,81	0,34	0,52
2006	0,65	1,47	0,65	1,18
2007	0,77	1,82	0,77	1,59
2008	0,56	1,28	0,56	1,27
2009	0,49	1,41	0,49	0,73
2010	0,19	0,54	0,19	0,38
2011	1,04	2,83	1,04	2,19
2012	0,47	1,25	0,47	1,13
2014	0,25	0,68	0,25	0,88
2015	0,15	0,40	0,15	0,39
2016	0,57	1,47	0,57	1,34
2017	0,66	1,80	0,66	1,02
2018	0,49	1,28	0,49	1,14

AÑO	Crecimiento medio (cm)	Crecimiento medio (%)	Oscilación media (cm)	Oscilación media (%)
2019	0,41	1,04	0,41	0,51
2020	0,48	1,27	0,48	1,12
2021	n.d	n.d	n.d	n.d
Media	0,42	1,07	0,42	0,83

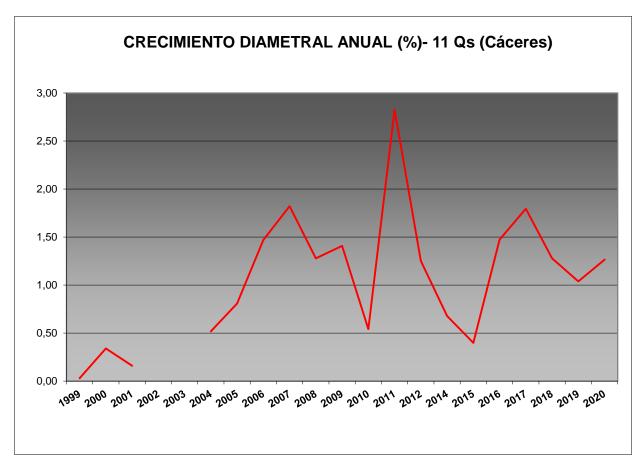
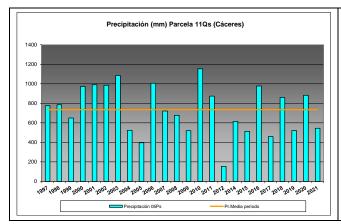


FIG 30: Crecimiento diametral anual. Porcentaje sobre el inicio.


Como puede verse en el gráfico anterior, el crecimiento diamétrico anual en la parcela considerada ha oscilado, excepción hecha del primer año de evaluación, entre el 0,16% de 2001 y el 2,83% de 2011, situándose por regla general en valores próximos al 1% anual, valor que se supera a lo largo de la última revisión. Debe hacerse constar que esta parcela se ha descorchado a lo largo del verano de 2021, debiéndose retirar los dendrómetros, por lo que no pueden obtenerse resultados fiables durante el último año.

11. Meteorología.

Se presenta a continuación un resumen de las principales variables meteorológicas recogidas en la estación de la parcela, de los datos disponibles en el sistema en el momento de la redacción del presente informe. Cabe hacer constar, por lo que se refiere a la meteorología, que los datos correspondientes a 2012 abarcan sólo el periodo enero-julio.

TABLA 33: Parámetros meteorológicos básicos. Precipitación anual. Temperatura media anual, máxima de las máximas, mínima de las mínimas, media de las máximas, media de las mínimas. Radiación solar media. Humedad relativa media. Velocidad del viento media y máxima.

Año	Prec	T med	T MAX	T MIN	T max	T min	Rad med	HR med	V viento med	V viento max
	(mm)			(°C)			(W/m^2)	(%)	(m	/s)
1997	775	9,0	19,3	-1,9	12,8	5,8	58,1	80,3	1,2	19,7
1998	785	15,2	39,0	-12,5	21,7	9,2	184,5	62,5	1,3	17,1
1999	650	16,5	40,6	-14,1	23,2	9,7	203,5	58,1	1,5	34,3
2000	972	18,4	38,7	-15,4	23,5	-5,0	182,0	49,4	2,0	20,8
2001	990	14,9	38,0	-19,2	22,0	6,8	191,9	56,7	0,7	19,7
2002	985	14,7	38,2	-15,5	21,7	2,9	225,8	59,9	0,9	32,5
2003	1085	14,7	38,2	-15,5	21,7	2,9	225,8	59,9	0,9	32,5
2004	524	15,1	41,0		22,5	-4,6		49,3	1,6	
2005	396	18,4	41,7	-19,0	24,3	-5,5		46,5	2,1	23,9
2006	1006	12,9	39,4	-18,4	18,8	5,9	120,6	65,3	1,4	19,0
2007	721	15,4	37,7	-4,5	22,2	9,2		63,5	1,1	
2008	677	16,0	39,3	-0,5	22,6	9,9	144,5	64,6	1,1	27,2
2009	520	18,1	38,4	-5,9	25,1	11,1	179,1	55,4	1,4	20,8
2010	1154	10,4	27,9	-3,1	15,4	5,5	95,1	67,7	1,1	23,5
2011	874	16,9	41,0	-4,0	23,6	10,2	137,1	67,2	3,3	23,9
2012	155						124,3	67,7	1,2	17,8
2014	615	15,5	38,2	-3,6	21,8	9,6	139,5	70,5	1,4	18,6
2015	512	16,0	40,2	-5,9	22,7	9,6	220,9	77,1	1,4	18,2
2016	978	15,6	41,2	-3,6	22,0	9,5	311,2	80,6	1,5	21,2
2017	459	16,6	41,9	-4,9	23,8	9,8	141,6	76,0	1,5	24,2
2018	860	15,2	43,4	-3,7	21,5	9,0	121,1	83,7	1,5	18,2
2019	521	16,0	39,1	-3,3	22,7	9,3	101,9	83,0	1,1	40,0
2020	882	15,9	39,5	-3,7	22,0	9,8	121,2	87,3	4,6	21,9
2021	545	15,9	41,6	-5,5	22,2	9,5	133,8	86,2	4,8	17,2
Media	735	15,4	38,4	-8,7	21,7	6,5	160,2	67,4	1,7	23,2

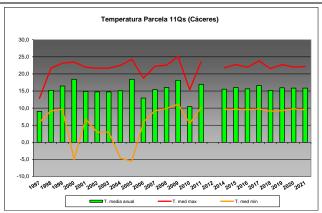


FIG 31: Principales variables meteorológicas.

Siguiendo la metodología publicada por ICP-Forests, se adjuntan a continuación varios parámetros definitorios de estrés climático, relativos a temperatura y precipitación, si bien cabe hacer constar que no todas las series meteorológicas están disponibles o completas.

TABLA 34: Parámetros de estrés meteorológico. DT: número de días con una temperatura máxima del aire superior a 30°C. DH: número de días con una temperatura máxima del aire inferior a 0°C. PMAX5: precipitación máxima acumulada a lo largo de 5 días durante el invierno (1 de enero a 28 de febrero y 1 de octubre a 31 de diciembre). PPES: días con una precipitación de más de 20 mm durante el periodo vegetativo (1 de mayo a 31 de agosto). NOPREC: número de días seguidos sin precipitación durante el periodo vegetativo (1 de mayo a 31 de agosto).

A == =	DT	DH	PI	MAX5	PPES	NO	OPREC
Año	días	Días	mm	Intervalo	Días	Días	Intervalo
2000	73	0	86,8	22/12 a 27/12	1	51	13/05 a 02/07
2001	82	2	85,2	17/10 a 21/10	1	21	19/05 a 08/06
2002	70	0	70,2	14/12 a 20/12	0	81	05/06 a 31/08
2003							
2004	65	0	39,0	21/02 a 25/02	0	51	26/05 a 15/07
2005	94	0	125,0	27/10 a 31/10	0	38	20/06 a 27/07
2006	20	1	170,0	22/10 a 26/10	0		
2007	62	0	68,0	08/02 a 12/02	3	33	20/06 a 22/07
2008	27	0	34,0	17/02 a 21/02	1	28	04/08 a 31/08
2009	96	0	112,8	27/12 a 31/12	0	36	17/06 a 22/07
2010			116,0	05/12 a 09/12	0	61	02/07 a 31/08
2011	102	0	101,4	23/10 a 27/10	0	35	07/06 a 11/07
2012							
2013							
2014	66	0	120,0	02/01 a 06/01	1	43	20/07 a 31/08
2015	91	0	77,0	31/10 a 04/11	0	76	16/06 a 30/08
2016	89	0	77,4	07/01 a 11/01	4	55	08/07 a 31/08
2017	110	0	70,2	10/02 a 14/02	1	37	26/07 a 31/08
2018	96	0	76,2	24/02 a 28/02	1	28	03/07 a 30/07
2019	94	0	106,2	18/12 a 22/12	0	26	11/05 a 05/06
2020	80	0	131,0	19/10 a 23/10	1	34	17/06 a 20/07
2021	78	0	139,4	29/10 a 02/11	1	56	07/07 a 31/08

12. Índice de Área Foliar.

El Índice de Área Foliar (Leaf Area Index o LAI) es un parámetro adimensional que se define como el área total de la superficie superior de las hojas por área de unidad de terreno que se encuentre directamente debajo de la planta. El LAI permite estimar la capacidad fotosintética de la vegetación y ayuda a entender la relación entre acumulación de biomasa y rendimiento bajo condiciones ambientales imperantes en una región determinada.

Su medición se efectúa anualmente en época de máxima foliación (generalmente a lo largo del verano) en todas las parcelas, y adicionalmente en invierno en aquellas pobladas por frondosas, mediante fotografía hemisférica situada en 16 ubicaciones fijas en cada parcela siguiendo una cuadrícula preestablecida, tratada posteriormente mediante software específico. Las evaluaciones han quedado normalizadas a partir de 2014, incluyéndose en el presente informe los datos disponibles a partir de dicha fecha, con la salvedad de haber corregido por un algoritmo más exacto a partir de 2016, de acuerdo con las actualizaciones del manual, a lo que pueden atribuirse parte de las variaciones interanuales.

TABLA 35: Índice de Área Foliar (LAI) por punto de observación y año.

SITIO	2014	2015	2016	2017	2018	2019	2020	2021	Media
S-01	1,69	1,35	1,36	1,07	1,55	0,86	1,28	1,06	1,28
S-02	1,54	1,12	1,25	0,89	0,96	1,07	1,14	1,10	1,13
S-03	1,55	1,05	1,25	0,95	1,18	1,12	1,18	1,01	1,16
S-04	1,55	0,96	1,25	0,89	1,10	0,91	1,16	1,01	1,11

SITIO	2014	2015	2016	2017	2018	2019	2020	2021	Media
S-05	1,86	1,01	1,41	0,99	1,23	1,28	1,17	1,05	1,25
S-06	1,33	0,93	1,26	1,15	1,10	0,75	1,08	0,91	1,06
S-07	1,39	1,07	1,40	1,06	1,29	1,05	1,16	1,13	1,20
S-08	1,55	1,20	1,45	1,23	1,44	1,10	1,28	1,16	1,30
S-09	1,42	1,22	1,45	1,13	1,33	1,30	1,34	1,11	1,29
S-10	1,51	1,12	1,69	1,08	1,40	1,15	1,32	1,14	1,30
S-11	1,42	1,05	1,42	1,27	1,17	1,09	1,11	1,03	1,20
S-12	1,64	1,06	1,56	1,23	1,41	1,18	1,20	1,10	1,30
S-13	1,57	1,20	1,74	1,13	1,39	1,06	1,20	1,20	1,31
S-14	1,65	1,08	1,70	1,17	1,44	1,13	1,21	1,20	1,32
S-15	1,45	1,26	1,59	1,02	1,20	1,08	1,36	1,26	1,28
S-16	1,23	1,09	1,26	0,97	0,91	0,76	1,09	1,16	1,06
Media	1,52	1,11	1,44	1,08	1,26	1,05	1,21	1,10	1,22

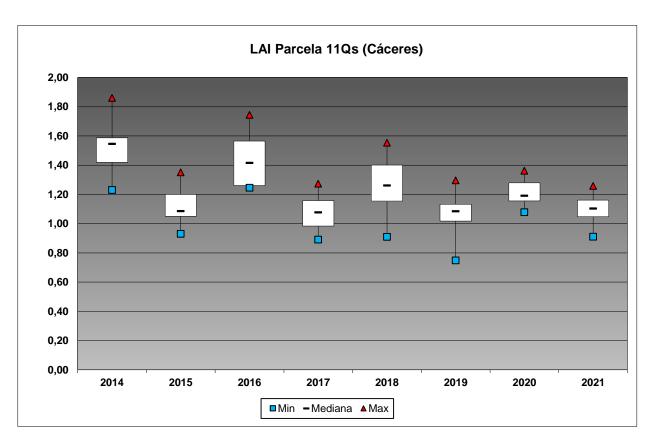


FIG 32: Diagrama de cajas LAI anual.

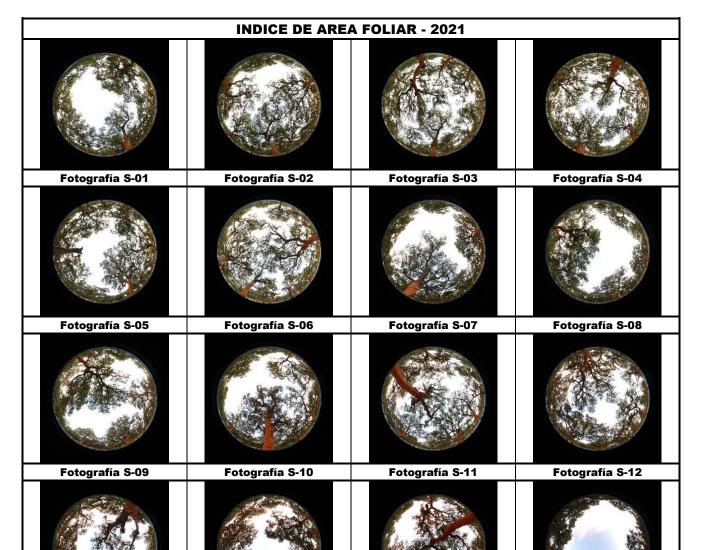


FIG 33: Fotos hemisféricas para determinación del Índice de Área Foliar.

Fotografía S-15

Fotografía S-14

Fotografía S-13

Fotografía S-16